Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38136868

ABSTRACT

This study investigated the relationship of the length of time spent grazing and ruminating with the performance parameters of spring-calved grazing dairy cows (n = 162) over the lactation period for three lactation seasons (n = 54 per season). The cows were Holstein Friesian (HFR), Jersey (JE), and a crossbreed of Holstein Friesian/Jersey (KiwiCross), with 18 cows from each breed. The cows were either in their 1st, 2nd, 3rd, or 4th lactation year, and had different breeding worth (BW) index values (103 < BW > 151). The cows were managed through a rotational grazing scheme with once-a-day milking in the morning at 05:00 h. The cows were mainly fed on grazed pastures consisting of perennial ryegrass (Lolium perenne), red clover (Trifolium pretense), and white clover (Trifolium repens), and received additional feeds on various days in the summer and autumn seasons. This study used an automated AfiCollar device to continuously record the grazing time and rumination time (min/h) of the individual cows throughout the lactation period (~270 days) for three consecutive years (Year-1, Year-2, and Year-3). The milk yield, milk fat, milk protein, milk solids, liveweight, and body condition score data of the individual animals for the study years were provided by the farm. PROC CORR was used in SAS to determine the correlation coefficients (r) between the behaviour and production parameters. A general linear model fitted with breed × lactation year, individual cows, seasons, feed within the season, grazing time, rumination time, as well as their interactions, was assessed to test the differences in milk yield, milk fat, milk protein, milk solids, liveweight, and body condition score. The type I sum of squares values were used to quantify the magnitude of variance explained by each of the study factors and their interactions in the study variables. Grazing time exhibited positive associations with MY (r = 0.34), MF (r = 0.43), MP (r = 0.22), MS (r = 0.39), LW (r = -0.47), and BCS (r = -0.24) throughout the study years. Rumination time was associated with MY (r = 0.64), MF (r = 0.57), MP (r = 0.52), and MS (r = 0.57) in all study years, while there were no effects of rumination time on LW (r = 0.26) and BCS (r = -0.26). Grazing time explained up to 0.32%, 0.49%, 0.17%, 0.31%, 0.2%, and 0.02%, and rumination time explained up to 0.39%, 6.73%, 4.63%, 6.53%, 0.44%, and 0.17% of the variance in MY, MF, MP, MS, LW, and BCS, respectively.

2.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36715205

ABSTRACT

This study investigated the variations in the temporal distributions and the lengths of times utilized for grazing, ruminating, and idling behaviors by grazing dairy cows over 24 h. Spring-calved lactating dairy cows (N = 54) from three breeds, Holstein-Friesian (HFR), Jersey (JE), and KiwiCross (KC) in different lactations (1st, 2nd, 3rd) and with different breeding worth index values (103 < BW > 151) were selected. The cows were managed through a rotational grazing scheme and milked once a day at 0500 hours. The cows grazed mainly pasture and consumed additional feeds (maize silage and turnips) in the summer and autumn seasons. AfiCollar was used to record grazing and rumination behaviors (min/h) in the individual cows throughout the lactation period (~270 d). The time neither utilized for grazing nor rumination was counted as idling behavior (min/h). A repeat measure design with PROC MIXED was performed in SAS considering the effects of breed, lactation, individual cow, the hour of the day, season, day within the season, and supplementary feed within the season to evaluate the difference in grazing, rumination, and idling behaviors. Hour of the day, season, day within season, and supplementary feed had significant effects on grazing, rumination, and idling behaviors. Regardless of the season and supplementary feed, cows spent most of the daytime grazing and most of the nighttime ruminating. Grazing activity remained consistently high throughout the day with two peaks around dawn and dusk and a short peak around midnight. Rumination activity remained high from the late evening until early morning. Grazing and ruminating patterns were similar between different breeds and lactations, however, JE cows grazed slightly longer than HFR and KC, and first-lactation cows grazed slightly longer than those in higher lactations. The onset and cessation of grazing activity by the cows were adjusted according to varying day lengths by season. Cows finished grazing earlier when they consumed additional supplements or silage along with pasture. Cows from different breed groups and lactations spent most of their 24 h grazing followed by ruminating and idling. Season and supplementary feed potentially affected the variations in behavior time budgets. These findings should support improving measures for grazing management to address pasture allocation and additional feed demands, and animal welfare in varying environmental and/or managemental conditions.


This study explored how grazing dairy cows pattern their essential such as including grazing, rumination, and idling, and how they distribute their time for those behaviors over 24 h. We used a group of spring-calved grazing dairy cows affiliated with different breeds, milking ages, and genetic merits and recorded their grazing and rumination behaviors for the whole milking period. An automated device, AfiCollar was used to continuously record minutes within an hour (min/h) utilized for grazing, rumination, and idling. The cows were mainly offered grass with some additional supplementary feeds on various days in summer and autumn and milked once a day at 0500 hours. Regardless of the breed, milking age, season, and supplementary feeds, grazing cows spent most of the daytime (from dawn to dusk) grazing and most of the nighttime ruminating, with a short grazing period around midnight. Cows adopted their grazing patterns according to varying day lengths during different seasons and finished grazing earlier when received supplementary feeds. Grazing cows allocated most of their time over 24 h for grazing followed by ruminating and idling. These findings could have implications to improve the measures for pasture management efficiency and additional feed demand, and animal welfare in varying environmental and/or managemental conditions.


Subject(s)
Diet , Lactation , Female , Cattle , Animals , Diet/veterinary , New Zealand , Dairying , Plant Breeding , Milk , Animal Feed/analysis
3.
Animals (Basel) ; 12(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36496843

ABSTRACT

This study investigated the variation in daily time spent grazing and rumination in spring-calved grazing dairy cows (n = 162) of three breeds, Holstein-Friesian (HFR), Jersey (JE), and KiwiCross (KC) with different breeding worth index, and in different years of lactation (1st, 2nd, 3rd, 4th). The cows were managed through a rotational grazing system and milked once a day at 05:00 a.m. The cows grazed mainly pasture and received supplementary feeds depending on the season. Automated AfiCollar device continuously monitored and recorded grazing time and rumination time of the individual cows throughout the lactation period for three study years (Year-1, Year-2, Year-3) with 54 cows per year. A general linear mixed model fitted with breed × lactation year with days in milk (DIM), breeding worth (BW) index value, individual cow, season, and feed, and their interactions was performed in SAS. Variance partitioning was used to quantify the effect size of study factors and their interactions. Individual cows, DIM, and BW (except Year-3) had effects on grazing and rumination times throughout the study years. Grazing time and rumination time were different for different seasons due to varying supplementary feeds. Grazing time varied among breeds in Year-2 and Year-3, and among lactation years only in Year-1. Although rumination time differed among breeds in Year-3, it remained the same within different lactation years. Grazing time and rumination time had a negative relationship with each other, and their regression lines varied for different seasons. The total variance explained by the model in grazing time was 36-39%, mainly contributed by the individual cow (12-20%), season (5-12%), supplementary feed (2-6%), breed (1-5%), and lactation year (1-6%). The total variance explained in rumination was 40-41%, mainly contributed by the individual cow (16-24%), season (2-17%), supplementary feed (1-2%), breed (2-8%), and lactation year (~1%). These findings could contribute to improving the measures for feed resource management during different seasons over the lactation period for a mixed herd comprising JE, HFR and KC breeds in different years of lactation.

4.
Animals (Basel) ; 11(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34573689

ABSTRACT

This study evaluated the accuracy of a sensor-based device (AfiCollar) to automatically monitor and record grazing and rumination behaviours of grazing dairy cows on a real-time basis. Multiparous spring-calved dairy cows (n = 48) wearing the AfiCollar were selected for the visual observation of their grazing and rumination behaviours. The total observation period was 36 days, divided into four recording periods performed at different times of the year, using 12 cows in each period. Each recording period consisted of nine daily observation sessions (three days a week for three consecutive weeks). A continuous behaviour monitoring protocol was followed to visually observe four cows at a time for each daily observation session, from 9:00 a.m. to 5:00 p.m. Overall, 144 observations were collected and the data were presented as behaviour activity per daily observation session. The behaviours visually observed were also recorded through an automated AfiCollar device on a real-time basis over the observation period. Automatic recordings and visual observations were compared with each other using Pearson's correlation coefficient (r), Concordance correlation coefficient (CCC), and linear regression. Compared to visual observation (VO), AfiCollar (AC) showed slightly higher (10%) grazing time and lower (4%) rumination time. AC results and VO results had strong associations with each other for grazing time (r = 0.91, CCC = 0.71) and rumination time (r = 0.89, CCC = 0.80). Regression analysis showed a significant linear relationship between AC and VO for grazing time (R2 = 0.83, p < 0.05) and rumination time (R2 = 0.78, p < 0.05). The relative prediction error (RPE) values for grazing time and rumination time were 0.17 and 0.40, respectively. Overall, the results indicated that AfiCollar is a reliable device to accurately monitor and record grazing and rumination behaviours of grazing dairy cows, although, some minor improvements can be made in algorithm calibrations to further improve its accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...