Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
ACS Omega ; 9(21): 23001-23012, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38826538

ABSTRACT

The literature does not provide any "high-performance thin-layer chromatographic (HPTLC)" techniques for the determination of a novel antidiabetic medicine, ertugliflozin (ERZ). Additionally, there are not many environmentally friendly analytical methods for ERZ measurement in the literature. A rapid, sensitive, and eco-friendly reversed-phase-HPTLC (RP-HPTLC) method was designed and validated in an attempt to analyze ERZ in marketed pharmaceutical tablets more precisely, accurately, and sustainably over the traditional normal-phase HPTLC (NP-HPTLC) method. The stationary phases used in the NP- and RP-HPTLC procedures were silica gel 60 NP-18F254S and 60 RP-18F254S plates, respectively. For NP-HPTLC, a chloroform/methanol (85:15 v/v) mobile phase was used. However, ethanol-water (80:20 v/v) was the preferred method for RP-HPTLC. Four distinct methodologies, including the National Environmental Method Index (NEMI), Analytical Eco-Scale (AES), ChlorTox, and Analytical GREEnness (AGREE) approaches, were used to evaluate the greenness of both procedures. For both approaches, ERZ detection was carried out at 199 nm. Using the NP- and RP-HPTLC techniques, the ERZ measurement was linear in the 50-600 and 25-1200 ng/band ranges. The RP-HPTLC method was found to be more robust, accurate, precise, linear, sensitive, and eco-friendly compared to the NP-HPTLC approach. The results of four greenness tools demonstrated that the RP strategy was greener than the NP strategy and all other reported HPLC techniques. The fact that both techniques can assess ERZ when its degradation products are present implies that they both have characteristics that point to stability-indicating features. 87.41 and 99.28%, respectively, were the assay results for ERZ in commercial tablets when utilizing the NP and RP procedures. Based on several validation and greenness metrics, it was determined that the RP-HPTLC approach was better than the NP-HPTLC method. As a result, it is possible to determine ERZ in pharmaceutical products using the RP-HPTLC approach.

2.
ACS Omega ; 9(21): 23101-23110, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38826547

ABSTRACT

The orexin receptor antagonist (ORA) is one of the new psychopharmacological agents used in the treatment of insomnia. There are currently no documented greener high-performance liquid chromatography-diode array detector (HPLC-DAD) methods for the analysis of ORA antagonists, lemborexant (LMB) and suvorexant (SUV) simultaneously. Therefore, in this study, a simple, sensitive, and greener HPLC-DAD method has been developed for the simultaneous quantitative analysis of LMB and SUV in bulk and laboratory-prepared mixture. The developed method was validated for numerous validation parameters and evaluated for greenness. The C18 Waters Spherisorb CN (4.6 × 250 mm2; 5 µm) column was used for the chromatographic separation. The mobile phase composition was ethanol: 10 mM KH2PO4 buffer in a ratio of (60:40 v/v). The DAD detection was performed at 253 nm using a Waters DAD detector. The greenness was evaluated using the analytical Eco-Scale (AES), ChlorTox, and analytical GREEnness (AGREE) techniques. The calibration curves showed excellent linearity for LMB and SUV between the concentration range of 125-5000 ng/mL and 250-10,000 ng/mL, respectively. In addition, the proposed HPLC-DAD method was accurate, precise, robust, highly sensitive, and greener. AES, ChlorTox, and AGREE scales were predicted by the HPLC-DAD method to be 91, 1.14 g, and 0.79, respectively, showing an excellent greenness profile. The greener HPLC-DAD method was successfully used to analyze both medicines quantitatively in bulk and laboratory-prepared synthetic mixtures. The findings of this study indicated that the proposed HPLC-DAD method may be consistently applied to evaluate LMB and SUV in bulk and dosage forms.

3.
RSC Adv ; 14(24): 16960-16970, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38799213

ABSTRACT

A simple yet convenient nucleophile-induced synthetic route for the construction of thermally stable fluorescent active functionalized stilbenes has been delineated. The nucleophile-induced base encouraged synthetic protocol was performed under mild conditions without harming the environment and products were achieved in good yields. The synthesized stilbenes showed amazing emission properties and good thermal stability. Synthesized products displayed interesting positive solvatochromism in different solvents based on variation in polarity. Further, we present a comprehensive analysis of the eight molecules, leveraging a combination of Density Functional Tight Binding (DFTB), Density Functional Theory (DFT) calculations, and Molecular Dynamics (MD) simulations. This integrated approach allowed for an in-depth exploration of the electronic structures, reactivity profiles, and dynamic behaviors of these complex molecular systems. Our findings reveal significant insights into the physicochemical properties of the synthesized molecules, contributing to a deeper understanding of their potential applications in various fields.

4.
Saudi Pharm J ; 32(5): 102048, 2024 May.
Article in English | MEDLINE | ID: mdl-38585197

ABSTRACT

Memory loss or dementia is a progressive disorder, and one of its common forms is Alzheimer's disease (AD), effecting mostly middle aged and older adults. In the present study, we developed Rivastigmine (RIV) nanoparticles using poly(lactic-co-glycolic acid) (RIV-loaded PLGA NPs) and polyvinyl alcohol (PVA). The prepared RIV-PLGA nanoparticles was evaluated for the management of Alzheimer's disease (AD). The nanoparticles were prepared by the slightly modified nano-precipitation technique. The developed formulations were evaluated for particle size, zeta potential (ZP), polydispersibility index (PDI) and surface morphology and drug content. The experimental result revealed that prepared RIV-loaded PLGA NPs (F1) was optimized having particle size (61.2 ± 4.6 nm), PDI (0.292), ZP (-11.2 ± 1.2). SEM study confirms the prepared nanoparticles depicted non-aggregated as well smooth surface particles without any fracture. This formulation (F1) was further assessed for in vivo studies on animal model. A pharmacological screening on an animal model of Alzheimer's disease revealed that RIV-loaded PLGA NPs formulations treat CNS disorders like Alzheimer's effectively. In addition to that, an in-vivo brain cholinesterase estimation study found that, animals treated with optimized formulation significantly (p < 0.01) reduced brain cholinesterase activity when compared to scopolamine-treated animals. According to the above results, it can be concluded that RIV-loaded PLGA NPs are ideal carriers for delivering the drug at a specific target site in the brain, thus may treat Alzheimer's disease efficiently and improve patient compliance.

5.
Chem Rec ; 24(4): e202400006, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38530037

ABSTRACT

Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs' size, shape, and surface properties. Surface modification methods further enhance NDs' biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.


Subject(s)
Communicable Diseases , Nanodiamonds , Vaccines , Humans , Nanodiamonds/chemistry , Drug Delivery Systems , Surface Properties
6.
J Genet Eng Biotechnol ; 22(1): 100346, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494259

ABSTRACT

BACKGROUND: As the world settles down from the COVID-19 pandemic, many countries are faced with an unexpected outbreak of monkeypox infection. Monkeypox is a zoonotic disease caused by monkeypox virus (MPXV), which is an enveloped, double stranded DNA virus belonging to the Poxviridae family. Presently, we construct and analyze the phylo-geo-network and the corresponding haplogroups. Presently, we performed the haplogroup analysis with their defining mutations and phylogenetic lineage study along with geographical distributions with the aim to understand the evolutionary path of the MPXV across the world. RESULTS: Information about 719 full length genomes of MPXV were collected from GISAID repository and the sequences extracted from NCBI. The alignment of 719 MPXV genomes and their subsequent analysis revealed a total of 1530 segregating sites of which 330 were parsimony informative (PI) sites. The variations had a positive value of Tajima's D statistic indicating some mutations being prevalent and hence balancing selection. A total of 39 haplogroups were observed in the phylo-geo-network and their defining mutations along with the evolutionary path has been discussed. The phylo-geo-network revealed the nodal haplogroup is represented by GISAID ID 13889450, haplogroup A1, an isolate from Germany, having a total of 296 identical sequences in the study incident across 22 countries. The localized evolution is highlighted by country specific sequences and haplogroups. USA had a total of 58 genomes and 13 haplogroups as compared to Peru (89 genomes, 7 haplogroups) and Germany (26 genomes, 6 haplogroups). CONCLUSIONS: The evolution of MPXV can be happening in a localized manner and hence accumulation of variations in the MPXV genomes needs to be monitored in order to be prepared for any possible threats.

7.
Eur J Drug Metab Pharmacokinet ; 49(2): 239-247, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38376657

ABSTRACT

BACKGROUND AND OBJECTIVES: The novel tyrosine kinase inhibitor (TKI) dasatinib, a multitarget inhibitor of Bcr-Abl and Src family kinases, has been licensed for the treatment of Ph+ acute lymphoblastic leukemia and chronic myeloid leukemia. Many citrus-based foods include the flavonoid naringenin, which is commonly available. Dasatinib is a Cyp3a4, P-gp, and Bcrp1 substrate, which makes it sensitive to potential food-drug interactions. The concurrent use of naringenin may change the pharmacokinetics of dasatinib, which could result in adverse effects and toxicity. The present investigation examined the impact of naringenin on the pharmacokinetics interactions of DAS and proposes a possible interaction mechanism in Wistar rats. METHODS: Rats were provided with a single oral dose of dasatinib (25 mg/kg) with or without naringenin pretreatment (150 mg/kg p.o. daily for 7 days, n = 6 in each group). Dasatinib was quantified in plasma by UHPLC MS/MS assay. Noncompartmental analysis was used to compute the pharmacokinetic parameters, and immunoblot was used to assess the protein expression in the hepatic and intestinal tissues. RESULTS: Following 7 days of naringenin pretreatment, the plasma mean concentration of dasatinib was enhanced compared with without pretreatment. In rats that were pretreated with naringenin, the pharmacokinetics of the orally administered dasatinib (25 mg/kg) was shown to be significantly different from that of dasatinib given without pretreatment (p < 0.05). There was a significant enhancement in pharmacokinetic parameters elimination half-life (T1/2), time to maximum concentration ( Tmax), maximum concentration )Cmax), area under the concentration-time curve (AUC0-t), area under the moment curve (AUMC0-∞), and mean residence time (MRT) by 28.41%, 50%, 103.54%, 72.64%, 115.08%, and 15.19%, respectively (p < 0.05) and suppression in elimination rate constant (Kel), volume of distribution (Vd), and clearance (CL) by 21.09%, 31.13%, and 46.25%, respectively, in comparison with dasatinib alone group (p < 0.05). The enhancement in dasatinib bioavailability and systemic exposure resulted from the significant inhibition of Cyp3a2, Mdr1/P-gp, and Bcrp1 expression and suppression of the dasatinib hepatic and intestinal metabolism, which enhanced the rate of dasatinib absorption and decreased its elimination. CONCLUSION: Concurrent use of naringenin-containing supplements, herbs, or foods with dasatinib may cause serious and potentially life-threatening drug interactions. Further studies are necessary to determine the clinical significance of these findings.


Subject(s)
Flavanones , Food-Drug Interactions , Tandem Mass Spectrometry , Rats , Animals , Dasatinib , Rats, Wistar
8.
Saudi Pharm J ; 32(1): 101898, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38192384

ABSTRACT

Dodonaea viscosa grows widely in Saudi Arabia, but studies evaluating its neuroprotective activity are lacking. Thus, this study aimed to isolate and identify the secondary metabolites and evaluate the neuroprotective effects of D. viscosa leaves. The isolation and identification of phytochemicals were performed using chromatographic and spectroscopic techniques. The neuroprotective potential of the extract was evaluated against focal cerebral ischaemia-reperfusion injury in rat model. Neurobehavioural deficits in the rats were evaluated, and their brains were harvested to measure infarct volume and oxidative biomarkers. Results revealed the presence of three compounds: a novel isoprenylated phenolic derivative that was elucidated as 4-hydroxy-3-(3'-methyl-2'-butenyl) phenyl 1-O-ß-D-apiosyl-(1''' â†’ 6'')- ß-D-glucopyranoside (named Viscomarfadol) and two known compounds (isorhamnetin-3-O-rutinoside and epicatechin (4-8) catechin). Pre-treatment of the rats with the extract improved neurological outcomes. It significantly reduced neurological deficits and infarct volume; significantly reduced lipid peroxidation, as evidenced by decreased malondialdehyde levels; and significantly elevated antioxidant (superoxide dismutase, catalase, and glutathione) activities. These results indicate that D. viscosa is a promising source of bioactive compounds that can improve neurological status, decrease infarct volume, and enhance antioxidant activities in rats with cerebral ischaemic injury. Thus, D. viscosa could be developed into an adjuvant therapy for ischaemic stroke and other oxidative stress-related neurodegenerative disorders. Further investigations are warranted to explore other bioactive compounds in D. viscosa and evaluate their potential neuroprotective activities.

9.
Langmuir ; 39(50): 18447-18457, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38055936

ABSTRACT

Graphene oxide-based composite membranes have received enormous attention for highly efficient water desalination. Herein, we prepare arginine/graphene oxide (Arg/GO) composite membranes by surface functionalizing GO nanosheets with arginine amino acid. Arginine has a unique combination of hydroxyl and amino functional groups that cross-link GO nanosheets through hydrogen bonding and electrostatic interactions. The as-prepared Arg@GO composite membranes with different thicknesses are used to separate the salt and dye molecules. The 900-nm-thick Arg@GO composite membrane shows high rejection of 98% for NaCl and 99.8% for MgCl2, Ni(NO3)2, and Pb(NO3)2 with good water permeance. Such a membrane also shows a high separation efficiency (100%) for methylene blue, rhodamine B, and Evans blue dyes. At the same time, the ultrathin Arg@GO composite membrane (220 ± 10 nm) exhibits high water permeance of up to 2100 ± 10 L m-2 h-1 bar-1. Furthermore, the 900-nm-thick Arg@GO composite membrane is stable in an aqueous environment for 40 days with significantly less swelling. Therefore, these membranes can be utilized in future desalination and separation applications.

10.
Heliyon ; 9(11): e22052, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027733

ABSTRACT

Background: Ischemic preconditioning (IPC) is the utmost capable design to achieve protection over ischemia-reperfusion injury (I/R), but this phenomenon gets attenuated during various pathological conditions like diabetes. Chrysin exhibits cardioprotection in various experiments however, its therapeutic potential on IPC-mediated cardioprotection via PI3K-Akt-eNOS pathway in streptozotocin (STZ) triggered diabetes-challenged rat heart is yet to be assessed. For that reason, the experiment has been planned to investigate chrysin's effect on the cardioprotective action of IPC involving the PI3K-Akt-eNOS cascade in rat hearts challenged to diabetes. Methods: The project was accomplished through means of absorbance studies for biochemical parameters, infarct size measurement (TTC stain) and coronary flow. Results: The findings of the present study revealed that STZ drastically augmented the serum glucose level and the chrysin significantly reversed the IPC-stimulated increased coronary flow, nitrite release, and reduced LDH (lactate dehydrogenase), CK-MB (creatine kinase) activities as well as infarct size in diabetes-induced rat heart. Furthermore, chrysin also reversed the IPC-induced reduction in oxidative stress in an isolated Langendorff's perfused diabetic rat heart. Moreover, four episodes of preconditioning by either PI3K or eNOS inhibitor in chrysin-pretreated diabetic rat hearts significantly abolished the protective effect of chrysin. Conclusion: Consequently, these observations suggested that chrysin increases the therapeutic efficiency of IPC in mitigating I/R injury via PI3K-Akt-eNOS signalling in diabetes-challenged rat hearts. Hence, chrysin could be a potential alternative option to IPC in diabetic rat hearts.

11.
Gels ; 9(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37888372

ABSTRACT

The purpose of the current study was to prepare and evaluate a citronella oil-loaded microemulsion-based micro-emulgel for the treatment of Candida albicans. The primary objective was to use the skin to transfer hydrophobic medications into the bloodstream. The formulation included cinnamon oil as an antifungal oil and citronella oil as an active pharmaceutical ingredient, respectively. Tween 80 and PEG 200 were used as the surfactant and co-surfactant, respectively, to create phase diagrams. Carbopol 940, one of the frequently used polymers, was investigated for its ability to prepare gel formulations. The optimized (F3) batch contained the highest percentage (87.05 ± 0.03%) of drug content and, according to the statistics provided, had the highest drug release rate of around 87.05% within 4 h. The Korsmeyer-Peppas model with n value of 0.82, which is in the range 0.5-1, had the highest r2 value, indicating that release following non-Fickian/anomalous diffusion provided a better dimension for all of the formulations. The optimized (F3) formulation had stronger antifungal activity in comparison to other formulations. This leads to the conclusion that citronella oil can be made into a micro-emulgel, which may improve its release in aqueous systems while maintaining a high level of drug release at the target site.

12.
ACS Omega ; 8(42): 39928-39935, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901579

ABSTRACT

Suvorexant (SUV) is a new sedative/hypnotic medicine that is recommended to treat insomnia. It is an important medicine from a forensic point of view due to its sedative/hypnotic and depressant effects. To the best of our knowledge, high-performance thin-layer chromatography (HPTLC) bioanalytical methods have not been published to measure SUV in human urine and pharmaceutical samples. Accordingly, this study was designed and validated a sensitive and rapid bioanalytical HPTLC method to determine SUV in human urine samples for the very first time. The densitometric measurement of SUV and the internal standard (IS; sildenafil) was performed on glass-coated silica gel normal-phase-60F254S TLC plates using a mixture of chloroform and methanol (97.5:2.5 v/v) as the eluent system. Both the SUV and IS were detected at a wavelength of 254 nm. Both analytes were extracted using the protein precipitation technique utilizing methanol as the solvent. For the IS and SUV, the Rf values were 0.09 and 0.45, respectively. The proposed bioanalytical method for SUV was linear in the 50-1600 ng/band range. The current bioanalytical technique was linear, precise (% RSD = 3.28-4.20), accurate (% recovery = 97.58-103.80), robust (% recovery = 95.31-102.34 and % RSD = 2.81-3.15), rapid, and sensitive (LOD = 3.73 ng/band and LOQ = 11.20 ng/band). These findings suggested that the current bioanalytical method can be regularly used to determine SUV in wide varieties of urine samples.

13.
Molecules ; 28(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894707

ABSTRACT

The present work elucidates the fabrication of Barium Lanthanum Oxide nanosheets (BaLa2O4 NSs) via a simple one-pot precipitation method. The acquired results show an orthorhombic crystal system with an average crystallite size of 27 nm. The morphological studies revealed irregular-shaped sheets stacked together in a layered structure, with the confirmation of the precursor elements. The diffused reflectance studies revealed a strong absorption between 200 nm and 350 nm, from which the band-gap energy was evaluated to be 4.03 eV. Furthermore, the fluorescence spectrum was recorded for the prepared samples; the excitation spectrum shows a strong peak at 397 nm, attributed to the 4F7/2→4G11/2 transition, while the emission shows two prominent peaks at 420 nm (4G7/2→4F7/2) and 440 nm (4G5/2→4F7/2). The acquired emission results were utilized to confirm the color emission using a chromaticity plot, which found the coordinates to be at (0.1529 0.1040), and the calculated temperature was 3171 K. The as-prepared nanosheets were utilized in detecting latent fingerprints (LFPs) on various non-porous surfaces. The powder-dusting method was used to develop latent fingerprints on various non-porous surfaces, which resulted in detecting all the three ridge patterns. Furthermore, the as-synthesized nanosheets were used to degrade methyl red (MR) dye, the results of which show more than 60% degradation at the 70th minute. It was also found that there was no further degradation after 70 min. All the acquired results suggest the clear potential of the prepared BaLa2O4 NSs for use in advanced forensic and photocatalytic applications.

14.
ACS Omega ; 8(33): 30655-30664, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636909

ABSTRACT

High-performance thin-layer chromatographic (HPTLC) assays for pomalidomide (PMD) measurement are lacking in the published database. Furthermore, eco-friendly stability-indicating analytical assays for PMD measurement are also lacking in the published database. In order to detect PMD in commercial products more accurately and sustainably than the conventional normal-phase HPTLC (NP-HPTLC) assay, an effort was made to design and verify a sensitive and eco-friendly reversed-phase HPTLC (RP-HPTLC) assay. The silica gel 60 NP-18F254S and 60 RP-18F254S plates were used as the stationary phases for NP-HPTLC and RP-HPTLC methods, respectively. The solvent system for NP-HPTLC was chloroform-methanol (90:10 v/v). However, the solvent system for RP-HPTLC was ethanol-water (75:25 v/v). The greenness scores for both assays were measured by AGREE approach. PMD measurement was performed for both assays at 372 nm. In the 50-600 and 20-1000 ng/band ranges, the NP-HPTLC and RP-HPTLC methods were linear for PMD measurement. The RP-HPTLC assay was superior to the NP-HPTLC method for measuring PMD in terms of sensitivity, accuracy, precision, and robustness. The ability of both methods to identify PMD in the presence of its degradation products suggests that both methods have stability-indicating features. When employing the NP-HPTLC and RP-HPTLC assays, respectively, the assay for PMD in commercial capsules was 88.68 and 98.83%. The AGREE scores for NP-HPTLC and RP-HPTLC assays were calculated to be 0.44 and 0.82, respectively, suggesting an outstanding greenness characteristic of the RP-HPTLC method than the NP-HPTLC method. The RP-HPTLC method was found to be superior to the NP-HPTLC method based on these findings. Therefore, the RP-HPTLC method could be successfully applied for the determination of PMD in pharmaceutical products.

15.
Molecules ; 28(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446763

ABSTRACT

Eco-friendly liquid chromatographic methods for measuring ergotamine (EGT) are scant in the published database. Accordingly, the goal of the current study was to develop a high-performance thin-layer chromatography (HPTLC) method for fluorescence detection of EGT in commercially available tablets. This approach was based on the application of ethyl alcohol-water (80:20 v/v) as the eco-friendly eluent mixture. The fluorescence detection of EGT was carried out at 322 nm. The greenness score of the present approach was evaluated by "Analytical GREENness (AGREE)" technology. The present approach for measuring EGT in the 25-1000 ng band-1 range was linear. The present assay for fluorescence detection of EGT was validated successfully by ICH guidelines for various parameters. The method was found to be rapid, sensitive, eco-friendly, and stability-indicating. The computed AGREE index for the current strategy was 0.84, displaying outstanding greenness features. The present methodology successfully separated the EGT degradation products under forced-degradation circumstances, exhibiting its stability-indicating qualities and selectivity. An amount of 99.33% of EGT was found in commercial formulations, indicating the validity of the current method for pharmaceutical analysis of EGT in commercial products. The results showed that EGT in commercial products might be regularly measured by the existing method.


Subject(s)
Ergotamines , Chromatography, Thin Layer/methods , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Tablets
16.
Gels ; 9(6)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37367133

ABSTRACT

The current study was performed to isolate keratin from chicken feathers with an intention to develop a keratin-genistein wound-healing hydrogel, along with its in vivo analysis. Pre-formulation aspects were analysed by using FTIR; SEM; HPTLC, while gel was characterized for gel strength, viscosity, spreadability, drug content, etc. Additionally, an in vivo study along with biochemical factors against pro-inflammatory factors and histopathological studies were conducted to determine possible wound-healing and anti-inflammatory effects. Pre-formulation studies revealed the presence of amide bonds with region of dense fibrous keratin and an internal porous network in extracted keratin, which corresponds with standard keratin. Evaluation of optimised keratin-genistein hydrogel indicated the development of neutral, non-sticky hydrogel which spread evenly on the skin. In vivo studies in rats indicate higher degrees of wound-healing in combined hydrogel (94.65%) for a duration of 14 days as compared to an individual hydrogel formulation with the development of the epidermis and excessive proliferation of fibrous connective tissue indicating wound repair. Furthermore, the hydrogel inhibited the overexpression of IL-6 gene along with other pro-inflammatory factors, indicating its anti-inflammatory effects. In order to find out the possibility of closure of wounds and anti-inflammatory properties of the novel product, an in vivo investigation into the healing of wounds in laboratory animals was carried out through biochemical (ELISA and qRT-PCR) analyses against inflammatory markers (IL-2, IL-6, IL-1, IL-10, and COX-2) and histopathological (liver, skin, and the kidneys) investigations. Based on the results, we conclude that keratin-genistein hydrogel is a promising therapeutic molecule for the management of wound repair.

17.
Eur J Pharmacol ; 954: 175832, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37329974

ABSTRACT

The onset and progression of Alzheimer's disease (AD) are influenced by a variety of factors. These include oxidative stress, overexpression of acetylcholinesterase (AChE), depletion of acetylcholine levels, increased beta-secretase mediated conversion of Amyloid Precursor Protein (APP) to Amyloid Beta (Abeta), accumulation of Abeta oligomers, decrease in Brain Derived Neurotrophic factor (BDNF) and accelerated neuronal apoptosis due to elevated levels of caspase-3. The currently available therapeutic approaches are inadequate in affecting these pathological processes except maybe the overexpression of AChE (AChE inhibitors like donepezil, rivastigmine). There is an urgent need to develop disease modifying pharmacotherapeutic interventions which have appreciable safety and cost effectiveness. From previously reported in vitro studies and a preliminary assessment of neuroprotective effect in scopolamine induced dementia-like cognitive impairment in mice, vanillin has been used as the compound of interest in the present study. Vanillin, a phytoconstituent, has been used in humans, safely, in the form of a flavouring agent for various foods, beverages, and cosmetics. Owing to its chemical nature i.e. being a phenolic aldehyde, it has an additional antioxidant property that is congruent to the desirable characteristics that are sought in a suitable novel anti-AD agent. In our study, vanillin proved to have a nootropic effect in healthy Swiss albino mice as well as an ameliorative effect in aluminium chloride and D-galactose induced AD model in mice. Apart from tackling oxidative stress, vanillin was found to reduce the levels of AChE, beta secretase, caspase-3, enhance degradation of Abeta plaques and elevate the levels of BDNF, in cortical and hippocampal regions. Vanillin is a promising candidate for being incorporated into the search for safe and effective anti-AD molecules. However, further research might be needed to warrant its application clinically.


Subject(s)
Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Aluminum Chloride , Amyloid beta-Peptides/metabolism , Galactose/adverse effects , Caspase 3/metabolism , Brain-Derived Neurotrophic Factor , Acetylcholinesterase/metabolism , Disease Models, Animal
18.
ACS Omega ; 8(24): 21618-21627, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360463

ABSTRACT

In the given study, a new reverse-phase high-performance liquid chromatography (RP-HPLC) method has been reported for the simultaneous estimation of ciprofloxacin hydrochloride (CPX) and rutin (RUT) using quality by design (QbD) approach. The analysis was carried out by applying the Box-Behnken design having fewer design points and less experimental runs. It relates between factors and responses and gives statistically significant values, along with enhancing the quality of the analysis. CPX and RUT were separated on the Kromasil C18 column (4.6 × 150 mm, 5 µm) using an isocratic mobile phase combination of phosphoric acid buffer (pH 3.0) and acetonitrile with the ratio of 87:13% v/v at a flow rate of 1.0 mL/min. CPX and RUT were detected at their respective wavelengths of 278 and 368 nm using a photodiode array detector. The developed method was validated according to guideline ICH Q2 R (1). The validation parameters taken were linearity, system suitability, accuracy, precision, robustness, sensitivity, and solution stability which were in the acceptable range. The findings suggest that the developed RP-HPLC method can be successfully applied to analyze novel CPX-RUT-loaded bilosomal nanoformulation prepared by thin-film hydration technique.

19.
Pharmaceutics ; 15(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242700

ABSTRACT

Eluxadoline (ELD), a recently approved drug, exhibits potential therapeutic effects in the management and treatment of IBS-D. However, its applications have been limited due to poor aqueous solubility, leading to a low dissolution rate and oral bioavailability. The current study's goals are to prepare ELD-loaded eudragit (EG) nanoparticles (ENPs) and to investigate the anti-diarrheal activity on rats. The prepared ELD-loaded EG-NPs (ENP1-ENP14) were optimized with the help of Box-Behnken Design Expert software. The developed formulation (ENP2) was optimized based on the particle size (286 ± 3.67 nm), PDI (0.263 ± 0.01), and zeta potential (31.8 ± 3.18 mV). The optimized formulation (ENP2) exhibited a sustained release behavior with maximum drug release and followed the Higuchi model. The chronic restraint stress (CRS) was successfully used to develop the IBS-D rat model, which led to increased defecation frequency. The in vivo studies revealed a significant reduction in defecation frequency and disease activity index by ENP2 compared with pure ELD. Thus, the results demonstrated that the developed eudragit-based polymeric nanoparticles can act as a potential approach for the effective delivery of eluxadoline through oral administration for irritable bowel syndrome diarrhea treatment.

20.
Funct Plant Biol ; 50(11): 955-964, 2023 11.
Article in English | MEDLINE | ID: mdl-37161500

ABSTRACT

Nanostructure gold nanoparticles (Au NPs) are well-known biological active materials, synthesised under different environment-friendly approaches that has gained significant interest in the field of biomedicine. This study investigated a novel, fast, easy, cost-effective and the eco-friendly method to synthesise Au NPs from mediated Viscum album Linn plant extract, where the plant metabolites act as stabilising and reducing agents. The synthesised Au NPs were analysed by UV/Vis spectroscopy that gave strong signals and a sharp absorption peak at 545nm due to the presence of surface plasmon resonance (SPR) bands. In addition, energy dispersive X-ray spectroscopy (EDX) showed that strong signals of Au NPs appeared at 9.7 and 2.3keV, as the rays of light passed. X-ray diffraction recognised the crystalline material and provided information on the cell unit that the synthesised Au NPs are face-centreed cubic in structure. The diffraction of X-ray spectra showed intense peaks at 38.44°, 44.7°, 44.9° and 77.8°. The mediated V. album plant extracts and synthesised Au NPs were screened against gram-positive and gram-negative (Enterobacter , Salmonella typhi , Escheria coli and Bacillus subtilis ) bacterial strains, confirming their antibacterial potential. Au NPs showed strong antibacterial activity due to its unique steric configuration. Au NPs damaged bacterial cell membrane leading to the leakage of the cytoplasm and death of the cell.


Subject(s)
Metal Nanoparticles , Viscum album , Metal Nanoparticles/chemistry , Gold/pharmacology , Gold/chemistry , Spectroscopy, Fourier Transform Infrared , Bacillus subtilis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...