Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 45(23): 4236-4244, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36168850

ABSTRACT

Human serum N-linked glycans expression levels change during the disease progression. The low abundance, structural diversity, and coexisting matrices hinder their detection in mass spectrometry analysis. Considering the hydrophilic nature of N-glycans, cellulose/polymer (1,2-Epoxy-5-hexene) nanohybrid is fabricated with oxirane groups functionalized of asparagine to develop solid phase extraction based hydrophilic interaction liquid chromatography sorbent (cellulose/1,2-Epoxy-5-hexene/asparagine). The morphology, elemental analysis, and surface properties are studied through scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The large surface area of cellulose/polymer nanohybrid (2.09 × 102  m2 /g) facilitates the high density of asparagine immobilization resulting in better hydrophilic interaction liquid chromatography enrichment under optimized conditions. The enrichment capability of nanohybrid/asparagine is assessed by the N-Linked glycans released from ovalbumin and immunoglobulin G where 23 and 13 N-glycans are detected respectively. The nanohybrid/asparagine shows selectivity of 1:1200 with spiked bovine serum albumin and sensitivity down to 100 attomole. Human serum profiling for N-glycans identifies 52 glycan structures. This new enrichment strategy enriches serum N-linked glycans in the presence of salts, proteins, endogenous serum peptides, and so forth.


Subject(s)
Cellulose , Polymers , Humans , Asparagine
SELECTION OF CITATIONS
SEARCH DETAIL
...