Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22282514

ABSTRACT

Access to COVID-19 vaccines on the global scale has been drastically impacted by structural socio-economic inequities. Here, we develop a data-driven, age-stratified epidemic model to evaluate the effects of COVID-19 vaccine inequities in twenty lower middle and low income countries (LMIC) sampled from all WHO regions. We focus on the first critical months of vaccine distribution and administration, exploring counterfactual scenarios where we assume the same per capita daily vaccination rate reported in selected high income countries. We estimate that, in this high vaccine availability scenario, more than 50% of deaths (min-max range: [56% - 99%]) that occurred in the analyzed countries could have been averted. We further consider a scenario where LMIC had similarly early access to vaccine doses as high income countries; even without increasing the number of doses, we estimate an important fraction of deaths (min-max range: [7% - 73%]) could have been averted. In the absence of equitable allocation, the model suggests that considerable additional non-pharmaceutical interventions would have been required to offset the lack of vaccines (min-max range: [15% - 75%]). Overall, our results quantify the negative impacts of vaccines inequities and call for amplified global efforts to provide better access to vaccine programs in low and lower middle income countries.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22268984

ABSTRACT

We previously reported a household secondary attack rate (SAR) for SARS-CoV-2 of 18.9% through June 17, 2021. To examine how emerging variants and increased vaccination have affected transmission rates, we searched PubMed from June 18, 2021, through January 7, 2022. Meta-analyses used generalized linear mixed models to obtain SAR estimates and 95%CI, disaggregated by several covariates. SARs were used to estimate vaccine effectiveness based on the transmission probability for susceptibility (VES,p), infectiousness (VEI,p), and total vaccine effectiveness (VET,p). Household SAR for 27 studies with midpoints in 2021 was 35.8% (95%CI, 30.6%-41.3%), compared to 15.7% (95%CI, 13.3%-18.4%) for 62 studies with midpoints through April 2020. Household SARs were 38.0% (95%CI, 36.0%-40.0%), 30.8% (95%CI, 23.5%-39.3%), and 22.5% (95%CI, 18.6%-26.8%) for Alpha, Delta, and Beta, respectively. VEI,p, VES,p, and VET,p were 56.6% (95%CI, 28.7%-73.6%), 70.3% (95%CI, 59.3%-78.4%), and 86.8% (95%CI, 76.7%-92.5%) for full vaccination, and 27.5% (95%CI, -6.4%-50.7%), 43.9% (95%CI, 21.8%-59.7%), and 59.9% (95%CI, 34.4%-75.5%) for partial vaccination, respectively. Household contacts exposed to Alpha or Delta are at increased risk of infection compared to the original wild-type strain. Vaccination reduced susceptibility to infection and transmission to others. SummaryHousehold secondary attack rates (SARs) were higher for Alpha and Delta variants than previous estimates. SARs were higher to unvaccinated contacts than to partially or fully vaccinated contacts and were higher from unvaccinated index cases than from fully vaccinated index cases.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22268849

ABSTRACT

In this report, we use a detailed simulation model to assess and project the COVID-19 epidemic in Florida. The model is a data-driven, stochastic, discrete-time, agent based model with an explicit representation of people and places. Using the model, we find that the omicron variant wave in Florida is likely to cause many more infections than occurred during the delta variant wave. Due to testing limitations and often mild symptoms, however, we anticipate that omicron infections will be underreported compared to delta. We project that reported cases of COVID-19 will continue to grow significantly and peak in early January 2022, and that the number of reported COVID-19 deaths due to omicron may be 1/3 of the total caused by the delta wave.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21257461

ABSTRACT

In this report, we provide summary estimates, from publications and reports, of vaccine efficacy (VE) for the COVID-19 vaccines that are being rolled out on a global scale. We find that, on average, the efficacy against any disease with infection is 85% (95% CI: 71 - 93%) after a fully course of vaccination. The VE against severe disease, hospitalization or death averages close to 100%. The average VE against infection, regardless of symptoms, is 84% (95% CI: 70 - 91%). We also find that the average VE against transmission to others for infected vaccinated people is 48% (95% CI: 45 - 52%). Finally, we prove summary estimates of the VE against any disease with infection for some of the variants of concern (VOC). The average VE for the VOC{gamma} (P1) is 61% (95% CI: 43 - 73%). The average VE for the VOC (B.1.1.7), {beta} (B.1.351), and{delta} (B.1.617.2) after dose 1 are 48% (95% CI: 44 - 51%), 35% (95% CI: -11 - 62%), and 33% (95% CI: 21 - 43%), respectively. The average VE for the VOC (B.1.1.7), {beta} (B.1.351), and{delta} (B.1.617.2) after dose 2 are 85% (95% CI: 25 - 97%), 57% (95% CI: 14 - 78%), and 78% (95% CI: 28 - 93%), respectively.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20164590

ABSTRACT

BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spread by direct, indirect, or close contact with infected people via infected respiratory droplets or saliva. Crowded indoor environments with sustained close contact and conversations are a particularly high-risk setting. MethodsWe performed a meta-analysis through July 29, 2020 of SARS-CoV-2 household secondary attack rate (SAR), disaggregating by several covariates (contact type, symptom status, adult/child contacts, contact sex, relationship to index case, index case sex, number of contacts in household, coronavirus). FindingsWe identified 40 relevant published studies that report household secondary transmission. The estimated overall household SAR was 18{middle dot}8% (95% confidence interval [CI]: 15{middle dot}4%-22{middle dot}2%), which is higher than previously observed SARs for SARS-CoV and MERS-CoV. We observed that household SARs were significantly higher from symptomatic index cases than asymptomatic index cases, to adult contacts than children contacts, to spouses than other family contacts, and in households with one contact than households with three or more contacts. InterpretationTo prevent the spread of SARS-CoV-2, people are being asked to stay at home worldwide. With suspected or confirmed infections referred to isolate at home, household transmission will continue to be a significant source of transmission.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20140285

ABSTRACT

We use a global metapopulation transmission model to study the establishment of sustained and undetected community transmission of the COVID-19 pandemic in the United States. The model is calibrated on international case importations from mainland China and takes into account travel restrictions to and from international destinations. We estimate widespread community transmission of SARS-CoV-2 in February, 2020. Modeling results indicate international travel as the key driver of the introduction of SARS-CoV-2 in the West and East Coast metropolitan areas that could have been seeded as early as late-December, 2019. For most of the continental states the largest contribution of imported infections arrived through domestic travel flows.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-20026328

ABSTRACT

BackgroundThe COVID-19 epidemic originated in Wuhan City of Hubei Province in December 2019 and has spread throughout China. Understanding the fast evolving epidemiology and transmission dynamics of the outbreak beyond Hubei would provide timely information to guide intervention policy. MethodsWe collected individual information on 8,579 laboratory-confirmed cases from official publically sources reported outside Hubei in mainland China, as of February 17, 2020. We estimated the temporal variation of the demographic characteristics of cases and key time-to-event intervals. We used a Bayesian approach to estimate the dynamics of the net reproduction number (Rt) at the provincial level. ResultsThe median age of the cases was 44 years, with an increasing of cases in younger age groups and the elderly as the epidemic progressed. The delay from symptom onset to hospital admission decreased from 4.4 days (95%CI: 0.0-14.0) until January 27 to 2.6 days (0.0-9.0) from January 28 to February 17. The mean incubation period was estimated at 5.2 days (1.8-12.4) and the mean serial interval at 5.1 days (1.3-11.6). The epidemic dynamics in provinces outside Hubei was highly variable, but consistently included a mix of case importations and local transmission. We estimate that the epidemic was self-sustained for less than three weeks with Rt reaching peaks between 1.40 (1.04-1.85) in Shenzhen City of Guangdong Province and 2.17 (1.69-2.76) in Shandong Province. In all the analyzed locations (n=10) Rt was estimated to be below the epidemic threshold since the end of January. ConclusionOur findings suggest that the strict containment measures and movement restrictions in place may contribute to the interruption of local COVID-19 transmission outside Hubei Province. The shorter serial interval estimated here implies that transmissibility is not as high as initial estimates suggested.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-20021261

ABSTRACT

Motivated by the rapid spread of a novel coronavirus (2019-nCoV) in Mainland China, we use a global metapopulation disease transmission model to project the impact of both domestic and international travel limitations on the national and international spread of the epidemic. The model is calibrated on the evidence of internationally imported cases before the implementation of the travel quarantine of Wuhan. By assuming a generation time of 7.5 days, the reproduction number is estimated to be 2.4 [90% CI 2.2-2.6]. The median estimate for number of cases before the travel ban implementation on January 23, 2020 is 58,956 [90% CI 40,759 - 87,471] in Wuhan and 3,491 [90% CI 1,924 - 7,360] in other locations in Mainland China. The model shows that as of January 23, most Chinese cities had already received a considerable number of infected cases, and the travel quarantine delays the overall epidemic progression by only 3 to 5 days. The travel quarantine has a more marked effect at the international scale, where we estimate the number of case importations to be reduced by 80% until the end of February. Modeling results also indicate that sustained 90% travel restrictions to and from Mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.

SELECTION OF CITATIONS
SEARCH DETAIL
...