Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Neuroimage ; 240: 118328, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34224852

ABSTRACT

Previous work introduced the [11C]yohimbine as a suitable ligand of central α2-adrenoreceptors (α2-ARs) for PET imaging. However, reproducibility of [11C]yohimbine PET measurements in healthy humans estimated with a simplified modeling method with reference region, as well as sensitivity of [11C]yohimbine to noradrenergic competition were not evaluated. The objectives of the present study were therefore to fill this gap. METHODS: Thirteen healthy humans underwent two [11C]yohimbine 90-minute dynamic scans performed on a PET-MRI scanner. Seven had arterial blood sampling with metabolite assessment and plasmatic yohimbine free fraction evaluation at the first scan to have arterial input function and test appropriate kinetic modeling. The second scan was a simple retest for 6 subjects to evaluate the test-retest reproducibility. For the remaining 7 subjects the second scan was a challenge study with the administration of a single oral dose of 150 µg of clonidine 90 min before the PET scan. Parametric images of α2-ARs distribution volume ratios (DVR) were generated with two non-invasive models: Logan graphical analysis with Reference (LREF) and Simplified Reference Tissue Method (SRTM). Three reference regions (cerebellum white matter (CERWM), frontal white matter (FLWM), and corpus callosum (CC)) were tested. RESULTS: We showed high test-retest reproducibility of DVR estimation with LREF and SRTM regardless of reference region (CC, CERWM, FLWM). The best fit was obtained with SRTMCC (r2=0.94). Test-retest showed that the SRTMCC is highly reproducible (mean ICC>0.7), with a slight bias (-1.8%), whereas SRTMCERWM had lower bias (-0.1%), and excellent ICC (mean>0.8). Using SRTMCC, regional changes have been observed after clonidine administration with a significant increase reported in the amygdala and striatum as well as in several posterior cortical areas as revealed with the voxel-based analysis. CONCLUSION: The results add experimental support for the suitability of [11C]yohimbine PET in the quantitative assessment of α2-ARs occupancy in vivo in the human brain. Trial registration EudraCT 2018-000380-82.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists/metabolism , Brain/diagnostic imaging , Brain/metabolism , Carbon Radioisotopes , Positron-Emission Tomography/standards , Yohimbine/metabolism , Adult , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Male , Positron-Emission Tomography/methods , Reference Standards , Reproducibility of Results , Young Adult
2.
Front Neurosci ; 15: 622423, 2021.
Article in English | MEDLINE | ID: mdl-33762906

ABSTRACT

INTRODUCTION: Serotonin is involved in a variety of physiological functions and brain disorders. In this context, efforts have been made to investigate the in vivo fluctuations of this neurotransmitter using positron emission tomography (PET) imaging paradigms. Since serotonin is a full agonist, it binds preferentially to G-protein coupled receptors. In contrast, antagonist PET ligands additionally interact with uncoupled receptors. This could explain the lack of sensitivity to serotonin fluctuations of current 5-HT1A radiopharmaceuticals which are mainly antagonists and suggests that agonist radiotracers would be more appropriate to measure changes in neurotransmitter release. The present study evaluated the sensitivity to endogenous serotonin release of a recently developed, selective 5-HT1A receptor PET radiopharmaceutical, the agonist [18F]F13640 (a.k.a. befiradol or NLX-112). MATERIALS AND METHODS: Four cats each underwent three PET scans with [18F]F13640, i.e., a control PET scan of 90 min, a PET scan preceded 30 min before by an intravenous injection 1 mg/kg of d-fenfluramine, a serotonin releaser (blocking challenge), and a PET scan comprising the intravenous injection of 1 mg/kg of d-fenfluramine 30 min after the radiotracer injection (displacement challenge). Data were analyzed with regions of interest and voxel-based approaches. A lp-ntPET model approach was implemented to determine the dynamic of serotonin release during the challenge study. RESULTS: D-fenfluramine pretreatment elicited a massive inhibition of [18F]F13640 labeling in regions known to express 5-HT1A receptors, e.g., raphe nuclei, hippocampus, thalamus, anterior cingulate cortex, caudate putamen, occipital, frontal and parietal cortices, and gray matter of cerebellum. Administration of d-fenfluramine during PET acquisition indicates changes in occupancy from 10% (thalamus) to 31% (gray matter of cerebellum) even though the dissociation rate of [18F]F13640 over the 90 min acquisition time was modest. The lp-ntPET simulation succeeded in differentiating the control and challenge conditions. CONCLUSION: The present findings demonstrate that labeling of 5-HT1A receptors with [18F]F13640 is sensitive to serotonin concentration fluctuations in vivo. Although the data underline the need to perform longer PET scan to ensure accurate measure of displacement, they support clinical development of [18F]F13640 as a tool to explore experimental paradigms involving physiological or pathological (neurological or neuropsychiatric pathologies) fluctuations of extracellular serotonin.

3.
Front Physiol ; 11: 498, 2020.
Article in English | MEDLINE | ID: mdl-32508679

ABSTRACT

This paper proposes an innovative method, named b-ntPET, for solving a competition model in PET. The model is built upon the state-of-the-art method called lp-ntPET. It consists in identifying the parameters of the PET kinetic model relative to a reference region that rule the steady state exchanges, together with the identification of four additional parameters defining a displacement curve caused by an endogenous neurotransmitter discharge, or by a competing injected drug targeting the same receptors as the PET tracer. The resolution process of lp-ntPET is however suboptimal due to the use of discretized basis functions, and is very sensitive to noise, limiting its sensitivity and accuracy. Contrary to the original method, our proposed resolution approach first estimates the probability distribution of the unknown parameters using Markov-Chain Monte-Carlo sampling, distributions from which the estimates are then inferred. In addition, and for increased robustness, the noise level is jointly estimated with the parameters of the model. Finally, the resolution is formulated in a Bayesian framework, allowing the introduction of prior knowledge on the parameters to guide the estimation process toward realistic solutions. The performance of our method was first assessed and compared head-to-head with the reference method lp-ntPET using well-controlled realistic simulated data. The results showed that the b-ntPET method is substantially more robust to noise and much more sensitive and accurate than lp-ntPET. We then applied the model to experimental animal data acquired in pharmacological challenge studies and human data with endogenous releases induced by transcranial direct current stimulation. In the drug challenge experiment on cats using [18F]MPPF, a serotoninergic 1A antagonist radioligand, b-ntPET measured a dose response associated with the amount of the challenged injected concurrent 5-HT1A agonist, where lp-ntPET failed. In human [11C]raclopride experiment, contrary to lp-ntPET, b-ntPET successfully detected significant endogenous dopamine releases induced by the stimulation. In conclusion, our results showed that the proposed method b-ntPET has similar performance to lp-ntPET for detecting displacements, but with higher resistance to noise and better robustness to various experimental contexts. These improvements lead to the possibility of detecting and characterizing dynamic drug occupancy from a single PET scan more efficiently.

4.
Nucl Med Biol ; 76-77: 10-14, 2019.
Article in English | MEDLINE | ID: mdl-31675615

ABSTRACT

RATIONALE: Renal positron emission tomography (PET) functional imaging allows non-invasive and dynamic measurements of functional and metabolic parameters. [15O]H2O is used as a perfusion tracer, and [11C]acetate as an oxidative metabolism in this purpose, requiring two injections to assess those fundamental parameters. Yet, in cardiac physiology study, the high first-pass myocardial extraction fraction of [11C]acetate allowed to use its influx rate as a blood flow marker too. Since [11C]acetate has been characterized by a 20-25% single pass renal extraction in dogs, it could be used as a potential tracer for renal perfusion. The aim of this study was to determine whether [11C]acetate influx rate can be used as quantitative in vivo marker of kidney perfusion in human. METHODS: In 10 healthy subjects, dynamic PET acquisitions were performed after [15O]H2O and [11C]acetate injections spaced by a 15-minute interval. As previously validated, with compartmental modeling of kinetics, renal perfusion and oxidative metabolism were estimated respectively with influx rate of [15O]H2O and efflux rate of [11C]acetate. Additionally, influx rate of [11C]acetate was regressed to influx rate of [15O]H2O. RESULTS: Renal time activity curves of [11C]-acetate was best fitted with a mono compartmental model compared to a bi-compartmental model (p < 0.0001). [11C]acetate influx rate was significantly correlated with perfusion quantified with [15O]H2O (r2 = 0.37, p < 0.001) at baseline. This regression allowed the computation of a renal [11C]acetate extraction fraction (EF), and further the computation of renal blood flow from its influx rate. CONCLUSION: In healthy subjects, over a wide range of renal perfusion, direct estimates of renal oxygen consumption as well as tissue perfusion can be obtained by PET with a single tracer [11C]acetate. This approach needs to be validated in CKD patients, and would be of great interest to design clinical protocol aiming at evaluating ischemic nephropathies candidate to revascularization.


Subject(s)
Acetates , Carbon Radioisotopes , Kidney/blood supply , Kidney/diagnostic imaging , Positron-Emission Tomography , Regional Blood Flow , Female , Humans , Kinetics , Male , Young Adult
5.
Diabetes Care ; 41(6): 1292-1294, 2018 06.
Article in English | MEDLINE | ID: mdl-29610272

ABSTRACT

OBJECTIVE: Chronic kidney disease is associated with higher morbidity and mortality in patients with diabetes. A low-protein diet is recommended to slow diabetic nephropathy progression because each protein load leads to renal hemodynamic variations. The aim of our study was to evaluate whether the advanced glycation end products (AGE) content of a protein load is responsible for the protein-induced renal hemodynamic variations in humans. RESEARCH DESIGN AND METHODS: Ten healthy subjects were assigned to a high-protein (1 g/kg) low-AGE (3,000 kU AGE) versus high-AGE (30,000 kU AGE) meal. Renal perfusion, oxygen consumption, and oxygen content were measured before and 120 min after each meal. RESULTS: Renal perfusion (3.2 ± 0.5 vs. 3.8 ± 0.4 mL/min/g; P = 0.0002) and oxygen consumption (0.3 ± 0.04 vs. 0.4 ± 0.08 min-1; P = 0.005) increased significantly after the high-AGE meal compared with the low-AGE meal. CONCLUSIONS: Our results suggest that the AGE content of a protein load is responsible for renal hemodynamic modifications. Therefore, prevention of diabetic nephropathy progression could aim predominantly at reducing food AGE content.


Subject(s)
Diabetic Nephropathies/metabolism , Dietary Proteins/metabolism , Glycation End Products, Advanced/metabolism , Kidney/metabolism , Renal Insufficiency, Chronic/metabolism , Adult , Cross-Over Studies , Female , Humans , Kidney/blood supply , Male , Middle Aged , Oxygen/metabolism , Oxygen Consumption , Pilot Projects , Prospective Studies , Young Adult
6.
J Nucl Med ; 59(11): 1761-1767, 2018 11.
Article in English | MEDLINE | ID: mdl-29653974

ABSTRACT

Head motion occurring during brain PET studies leads to image blurring and to bias in measured local quantities. The objective of this work was to implement a correction method for PET data acquired with the mMR synchronous PET/MR scanner. Methods: A list-mode-based motion-correction approach has been designed. The developed rebinner chronologically reads the recorded events from the Siemens list-mode file, applies the estimated geometric transformations, and frames the detected counts into sinograms. The rigid-body motion parameters were estimated from an initial dynamic reconstruction of the PET data. We then optimized the correction for 11C-Pittsburgh compound B (11C-PIB) scans using simulated and actual data with well-controlled motion. Results: An efficient list-mode-based motion correction approach has been implemented, fully optimized, and validated using simulated and actual PET data. The average spatial resolution loss induced by inaccuracies in motion parameter estimates and by the rebinning process was estimated to correspond to a 1-mm increase in full width at half maximum with motion parameters estimated directly from the PET data with a temporal frequency of 20 s. The results show that the rebinner can be safely applied to the 11C-PIB scans, allowing almost complete removal of motion-induced artifacts. The application of the correction method to a large cohort of 11C-PIB scans led to the following observations: first, that more than 21% of the scans were affected by motion greater than 10 mm (39% for subjects with Mini-Mental State Examination scores below 20), and second, that the correction led to quantitative changes in Alzheimer-specific cortical regions of up to 30%. Conclusion: The rebinner allows accurate motion correction at a cost of minimal resolution reduction. Application of the correction to a large cohort of 11C-PIB scans confirmed the necessity of systematically correcting for motion to obtain quantitative results.


Subject(s)
Benzothiazoles , Positron-Emission Tomography/statistics & numerical data , Radiopharmaceuticals , Aniline Compounds , Brain/diagnostic imaging , Carbon Radioisotopes , Cohort Studies , Computer Simulation , Head Movements , Humans , Image Interpretation, Computer-Assisted/statistics & numerical data , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/statistics & numerical data , Motion , Multimodal Imaging/instrumentation , Multimodal Imaging/statistics & numerical data , Neuroimaging/instrumentation , Neuroimaging/statistics & numerical data , Positron-Emission Tomography/instrumentation , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...