Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biofouling ; 35(4): 377-391, 2019 04.
Article in English | MEDLINE | ID: mdl-31119950

ABSTRACT

This study assessed the role of a new Acinetobacter calcoaceticus strain, GSN3, with biofilm-forming and phenol-degrading abilities. Three biofilm reactors were spiked with activated sludge (R1), green fluorescent plasmid (GFP) tagged GSN3 (R2), and their combination (R3). More than 99% phenol removal was achieved during four weeks in R3 while this efficiency was reached after two and four further operational weeks in R2 and R1, respectively. Confocal scanning electron microscopy revealed that GSN3-gfp strains appeared mostly in the deeper layers of the biofilm in R3. After four weeks, almost 7.07 × 107 more attached sludge cells were counted per carrier in R3 in comparison to R1. Additionally, the higher numbers of GSN3-gfp in R2 were unable to increase the efficiency as much as measured in R3. The presence of GSN3-gfp in R3 conveyed advantages, including enhancement of cell immobilization, population diversity, metabolic cooperation and ultimately treatment efficiency.


Subject(s)
Acinetobacter calcoaceticus/physiology , Biofilms , Biodegradation, Environmental , Ecosystem , Green Fluorescent Proteins/metabolism , Phenols/metabolism , Sewage
2.
World J Microbiol Biotechnol ; 34(11): 164, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30368594

ABSTRACT

In this study, the efficiency improvement of three moving bed biofilm reactors (MBBRs) was investigated by inoculation of activated sludge cells (R1), mixed culture of eight strong phenol-degrading bacteria consisted of Pseudomonas spp. and Acinetobacter spp. (R2) and the combination of both (R3). Biofilm formation ability of eight bacteria was assessed initially using different methods and media. Maximum degradation of phenol, COD, biomass growth and also changes in organic loading shock were used as parameters to measure the performance of reactors. According to the results, all eight strains were determined as enhanced biofilm forming bacteria (EBFB). Under optimum operating conditions, more than 90% of initial COD load of 2795 mg L-1 was reduced at 24 HRT in R3 while this reduction efficiency was observed in concentrations of 1290 mg L-1 and 1935 mg L-1, in R1 and R2, respectively. When encountering phenol loading shock-twice greater than optimum amount-R1, R2 and R3 managed to return to the steady-state condition within 32, 24 and 18 days, respectively. SEM microscopy and biomass growth measurements confirmed the contribution of more cells to biofilm formation in R3 followed by R2. Additionally, established biofilm in R3 was more resistant to phenol loading shock which can be attributed to the enhancer role of EBFB strains in this reactor. It has been demonstrated that the bacteria with both biofilm-forming and contaminant-degrading abilities are not only able to promote the immobilization of other favorable activated sludge cells in biofilm structure, but also cooperate in contaminant degradation which all consequently lead to improvement of treatment efficiency.


Subject(s)
Acinetobacter/metabolism , Biofilms , Bioreactors/microbiology , Phenol/metabolism , Pseudomonas/metabolism , Sewage/microbiology , Acinetobacter/growth & development , Biodegradation, Environmental , Pseudomonas/growth & development
3.
Iran J Microbiol ; 8(2): 101-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27307975

ABSTRACT

BACKGROUND AND OBJECTIVES: The US Environmental Protection Agency has suggested faecal enterococci as the primary bacterial indicators. Of more importance is their direct correlation with swimmer-associated gastroenteritis in recreation water quality monitoring. In contrast to other seawater bodies with 3.5% salinity, the recreational waters in the southern coast of the Caspian Sea possess its own salinity (about 1% w/v) and thus require further investigations to determine the capacity of Enterococcus faecalis as the sole primary microbial index in this unique aquatic environment. MATERIALS AND METHODS: The survey of the presence and survival of E. faecalis as a microbial index in the recreational waters of the southern Caspian Sea was carried out using a microcosm as an experimental model. The concentration of E. faecalis cells in samples of seawater were estimated by a standard membrane filtration method using m-Enterococcus agar as the selective culture medium. As the current standard culture-based methods are not reliable enough for the detection of non-growing, damaged and under-tension bacteria, PCR was used to identify the possible VBNC form of the bacterium after disappearance of the culturable cells. RESULTS AND CONCLUSION: A continuous decline in the number of culturable E. faecalis cells resulted in apparent elimination of the bacteria from seawater in a defined period. Detection of intact DNA was possible in the following 60 days. The salinity of about 1% and the self-purification properties of the Caspian Sea make the conditions feasible for the use of this microorganism as a measure of water quality throughout the region. The results confirmed the presence of damaged bacterial cells, namely VBNC forms, indicating the necessity of examining of the sea water samples by using molecular approaches or repair procedures.

SELECTION OF CITATIONS
SEARCH DETAIL
...