Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 26(6): 1188-98, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25609085

ABSTRACT

We recently identified a novel GPCR-dependent pathway for regulation of cardiac hypertrophy that depends on Golgi phosphatidylinositol 4-phosphate (PI4P) hydrolysis by a specific isoform of phospholipase C (PLC), PLCε, at the nuclear envelope. How stimuli are transmitted from cell surface GPCRs to activation of perinuclear PLCε is not clear. Here we tested the role of G protein ßγ subunits. Gßγ inhibition blocked ET-1-stimulated Golgi PI4P depletion in neonatal and adult ventricular myocytes. Blocking Gßγ at the Golgi inhibited ET-1-dependent PI4P depletion and nuclear PKD activation. Translocation of Gßγ to the Golgi stimulated perinuclear Golgi PI4P depletion and nuclear PKD activation. Finally, blocking Gßγ at the Golgi or PM blocked ET-1-dependent cardiomyocyte hypertrophy. These data indicate that Gßγ regulation of the perinuclear Golgi PI4P pathway and a separate pathway at the PM is required for ET-1-stimulated hypertrophy, and the efficacy of Gßγ inhibition in preventing heart failure maybe due in part to its blocking both these pathways.


Subject(s)
GTP-Binding Protein beta Subunits/physiology , GTP-Binding Protein gamma Subunits/physiology , Golgi Apparatus/metabolism , Myocytes, Cardiac/physiology , Animals , Cardiomegaly/metabolism , Cells, Cultured , Hydrolysis , Phosphatidylinositol Phosphates , Protein Transport , Rats, Sprague-Dawley , Second Messenger Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...