Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5587, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454042

ABSTRACT

Fractured crystalline rocks have been chosen or are under consideration by several countries as host rock formations for deep geological repositories for spent nuclear fuel. In such geological formations, flow and solute transport are mostly controlled by a network of connected natural fractures, each of them being characterised by internal heterogeneity, also denoted as roughness. Fractures are, in turn, subject to variable load caused by various factors, such as the presence of thick ice sheets formed during glaciation periods. Understanding how coupled hydro-mechanical (HM) processes affect flow and transport at the scale of a single natural fracture is crucial for a robust parameterisation of large-scale discrete fracture network models, which are not only used for nuclear waste disposal applications but are also of interest to problems related to geothermics, oil and gas production or groundwater remediation. In this work, we analyse and model an HM experiment carried out in a single natural fracture and use the results of both, the experimental and the modelling work, to get insights into fundamental questions such as the applicability of local cubic law or the effect of normal load on channeling. The initial fracture aperture was obtained from laser scanning of the two fracture surfaces and an equivalent initial aperture was then defined by moving the two fracture surfaces together and comparing the results obtained using a Navier-Stokes based computational fluid dynamics (CFD) model with the experimental flowrate obtained for unloaded conditions. The mechanical effect of the different loading stages was simulated using a high-resolution contact model. The different computed fracture apertures were then used to run groundwater flow simulations using a modified Reynolds equation. The results show that, without correction, local cubic law largely overestimates flowrates. Instead, we show that by explicitly acknowledging the difference between the mechanical aperture and the hydraulic aperture and setting the latter equal to 1/5 of the former, cubic law provides a very reasonable approximation of the experimental flowrates over the entire loading cycle. A positive correlation between fluid flow channeling and normal load is also found.

2.
J Contam Hydrol ; 207: 8-16, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29074267

ABSTRACT

Field investigation studies, conducted in the context of safety analyses of deep geological repositories for nuclear waste, have pointed out that in fractured crystalline rocks sorbing radionuclides can diffuse surprisingly long distances deep into the intact rock matrix; i.e. much longer distances than those predicted by reactive transport models based on a homogeneous description of the properties of the rock matrix. Here, we focus on cesium diffusion and use detailed micro characterisation data, based on micro computed tomography, along with a grain-scale Inter-Granular Network model, to offer a plausible explanation for the anomalously long cesium penetration profiles observed in these in-situ experiments. The sparse distribution of chemically reactive grains (i.e. grains belonging to sorbing mineral phases) is shown to have a strong control on the diffusive patterns of sorbing radionuclides. The computed penetration profiles of cesium agree well with an analytical model based on two parallel diffusive pathways. This agreement, along with visual inspection of the spatial distribution of cesium concentration, indicates that for sorbing radionuclides the medium indeed behaves as a composite system, with most of the mass being retained close to the injection boundary and a non-negligible part diffusing faster along preferential diffusive pathways.


Subject(s)
Cesium Radioisotopes/analysis , Geology/methods , Models, Theoretical , Silicon Dioxide/chemistry , X-Ray Microtomography/methods , Computer Simulation , Diffusion , Porosity , Radioactive Waste , Radioisotopes/analysis , Water Pollutants, Radioactive/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...