Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38766140

ABSTRACT

Midbrain dopamine neurons (DNs) respond to a first exposure to addictive drugs and play key roles in chronic drug usage1-3. As the synaptic and transcriptional changes that follow an acute cocaine exposure are mostly resolved within a few days4,5, the molecular changes that encode the long-term cellular memory of the exposure within DNs remain unknown. To investigate whether a single cocaine exposure induces long-term changes in the 3D genome structure of DNs, we applied Genome Architecture Mapping and single nucleus transcriptomic analyses in the mouse midbrain. We found extensive rewiring of 3D genome architecture at 24 hours past exposure which remains or worsens by 14 days, outlasting transcriptional responses. The cocaine-induced chromatin rewiring occurs at all genomic scales and affects genes with major roles in cocaine-induced synaptic changes. A single cocaine exposure triggers extensive long-lasting changes in chromatin condensation in post-synaptic and post-transcriptional regulatory genes, for example the unfolding of Rbfox1 which becomes most prominent 14 days post exposure. Finally, structurally remodeled genes are most expressed in a specific DN sub-type characterized by low expression of the dopamine auto-receptor Drd2, a key feature of highly cocaine-sensitive cells. These results reveal an important role for long-lasting 3D genome remodelling in the cellular memory of a single cocaine exposure, providing new hypotheses for understanding the inception of drug addiction and 3D genome plasticity.

2.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766012

ABSTRACT

Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, mediated by Polycomb repression. We show that histone genes are expressed with allelic imbalance in mESCs, are involved in haplotype-specific chromatin contact marked by H3K27me3, and are targets of Polycomb repression through conditional knockouts of Ezh2 or Ring1b. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.

3.
Nature ; 599(7886): 684-691, 2021 11.
Article in English | MEDLINE | ID: mdl-34789882

ABSTRACT

The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function1-3. Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi4-6. However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation7, are invisible with such approaches8. Here we developed immunoGAM, an extension of genome architecture mapping (GAM)2,9, to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation2,10. We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive 'melting' of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions.


Subject(s)
Brain/cytology , Cells/classification , Chromatin Assembly and Disassembly , Chromatin/chemistry , Chromatin/genetics , Genes , Molecular Conformation , Animals , Binding Sites , Cells/metabolism , Chromatin/metabolism , Gene Expression Regulation , Male , Mice , Multigene Family/genetics , Neurons/classification , Neurons/metabolism , Nucleic Acid Denaturation , Transcription Factors/metabolism
5.
Nat Commun ; 12(1): 5415, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34518536

ABSTRACT

Coordinated chromatin interactions between enhancers and promoters are critical for gene regulation. The architectural protein CTCF mediates chromatin looping and is enriched at the boundaries of topologically associating domains (TADs), which are sub-megabase chromatin structures. In vitro CTCF depletion leads to a loss of TADs but has only limited effects over gene expression, challenging the concept that CTCF-mediated chromatin structures are a fundamental requirement for gene regulation. However, how CTCF and a perturbed chromatin structure impacts gene expression during development remains poorly understood. Here we link the loss of CTCF and gene regulation during patterning and organogenesis in a ctcf knockout zebrafish model. CTCF absence leads to loss of chromatin structure and affects the expression of thousands of genes, including many developmental regulators. Our results demonstrate the essential role of CTCF in providing the structural context for enhancer-promoter interactions, thus regulating developmental genes.


Subject(s)
CCCTC-Binding Factor/genetics , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Gene Knockout Techniques/methods , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Body Patterning/genetics , CCCTC-Binding Factor/deficiency , CRISPR-Cas Systems , Chromatin/genetics , Chromatin/metabolism , Embryo, Nonmammalian/embryology , Enhancer Elements, Genetic/genetics , Organogenesis/genetics , Promoter Regions, Genetic/genetics , RNA-Seq/methods , Zebrafish/embryology , Zebrafish Proteins/deficiency
6.
Nat Methods ; 18(5): 482-490, 2021 05.
Article in English | MEDLINE | ID: mdl-33963348

ABSTRACT

Hi-C, split-pool recognition of interactions by tag extension (SPRITE) and genome architecture mapping (GAM) are powerful technologies utilized to probe chromatin interactions genome wide, but how faithfully they capture three-dimensional (3D) contacts and how they perform relative to each other is unclear, as no benchmark exists. Here, we compare these methods in silico in a simplified, yet controlled, framework against known 3D structures of polymer models of murine and human loci, which can recapitulate Hi-C, GAM and SPRITE experiments and multiplexed fluorescence in situ hybridization (FISH) single-molecule conformations. We find that in silico Hi-C, GAM and SPRITE bulk data are faithful to the reference 3D structures whereas single-cell data reflect strong variability among single molecules. The minimal number of cells required in replicate experiments to return statistically similar contacts is different across the technologies, being lowest in SPRITE and highest in GAM under the same conditions. Noise-to-signal levels follow an inverse power law with detection efficiency and grow with genomic distance differently among the three methods, being lowest in GAM for genomic separations >1 Mb.


Subject(s)
Chromatin/chemistry , Models, Chemical , Polymers/chemistry , Animals , Chromosome Mapping , Computer Simulation , Humans , Mice , Single Molecule Imaging , Single-Cell Analysis
7.
Bioinformatics ; 37(19): 3128-3135, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-33830196

ABSTRACT

MOTIVATION: Genome Architecture Mapping (GAM) was recently introduced as a digestion- and ligation-free method to detect chromatin conformation. Orthogonal to existing approaches based on chromatin conformation capture (3C), GAM's ability to capture both inter- and intra-chromosomal contacts from low amounts of input data makes it particularly well suited for allele-specific analyses in a clinical setting. Allele-specific analyses are powerful tools to investigate the effects of genetic variants on many cellular phenotypes including chromatin conformation, but require the haplotypes of the individuals under study to be known a priori. So far, however, no algorithm exists for haplotype reconstruction and phasing of genetic variants from GAM data, hindering the allele-specific analysis of chromatin contact points in non-model organisms or individuals with unknown haplotypes. RESULTS: We present GAMIBHEAR, a tool for accurate haplotype reconstruction from GAM data. GAMIBHEAR aggregates allelic co-observation frequencies from GAM data and employs a GAM-specific probabilistic model of haplotype capture to optimize phasing accuracy. Using a hybrid mouse embryonic stem cell line with known haplotype structure as a benchmark dataset, we assess correctness and completeness of the reconstructed haplotypes, and demonstrate the power of GAMIBHEAR to infer accurate genome-wide haplotypes from GAM data. AVAILABILITY AND IMPLEMENTATION: GAMIBHEAR is available as an R package under the open-source GPL-2 license at https://bitbucket.org/schwarzlab/gamibhear. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

8.
Nat Commun ; 12(1): 364, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441541

ABSTRACT

Temporal dynamics and mechanisms underlying epigenetic changes in Huntington's disease (HD), a neurodegenerative disease primarily affecting the striatum, remain unclear. Using a slowly progressing knockin mouse model, we profile the HD striatal chromatin landscape at two early disease stages. Data integration with cell type-specific striatal enhancer and transcriptomic databases demonstrates acceleration of age-related epigenetic remodelling and transcriptional changes at neuronal- and glial-specific genes from prodromal stage, before the onset of motor deficits. We also find that 3D chromatin architecture, while generally preserved at neuronal enhancers, is altered at the disease locus. Specifically, we find that the HD mutation, a CAG expansion in the Htt gene, locally impairs the spatial chromatin organization and proximal gene regulation. Thus, our data provide evidence for two early and distinct mechanisms underlying chromatin structure changes in the HD striatum, correlating with transcriptional changes: the HD mutation globally accelerates age-dependent epigenetic and transcriptional reprogramming of brain cell identities, and locally affects 3D chromatin organization.


Subject(s)
Aging , Chromatin Assembly and Disassembly/genetics , Corpus Striatum/metabolism , Disease Models, Animal , Huntington Disease/genetics , Neurodegenerative Diseases/genetics , Animals , Behavior, Animal/physiology , Chromatin/genetics , Corpus Striatum/cytology , Corpus Striatum/physiopathology , Epigenomics/methods , Gene Expression Profiling/methods , Gene Expression Regulation , Humans , Huntingtin Protein/genetics , Huntington Disease/diagnosis , Huntington Disease/physiopathology , Mice, Inbred C57BL , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/physiopathology , Neurons/metabolism , Trinucleotide Repeat Expansion/genetics
9.
Structure ; 27(6): 886-892, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31130484

ABSTRACT

Historically, structural biology has been largely centered on in vitro approaches as the dominant technique to obtain indispensable high-resolution data. In situ structural biology is now poised to contribute with high-precision observations in a near-physiological context. Mass spectrometry, electron tomography, and fluorescence microscopy are opening up new opportunities for structural analysis, including the study of the protein machinery in living cells. The complementarity between studies is increasingly used to reveal biologically significant observations. Here we compare two complementary studies addressing the mechanisms of vesicle tethering with in vitro and in situ approaches. Cryoelectron microscopy and live-cell imaging assisted by anchoring platforms team up to explore elusive mechanisms of exocytosis, showing directions of future research.


Subject(s)
Cell Membrane/ultrastructure , Cryoelectron Microscopy/methods , Cytoplasm/ultrastructure , Electron Microscope Tomography/methods , Exocytosis , Proteins/chemistry , Cell Membrane/metabolism , Cytoplasm/metabolism , Models, Molecular , Protein Conformation , Protein Multimerization , Protein Transport , Proteins/metabolism
10.
PLoS Comput Biol ; 14(3): e1006030, 2018 03.
Article in English | MEDLINE | ID: mdl-29522512

ABSTRACT

The use of 3C-based methods has revealed the importance of the 3D organization of the chromatin for key aspects of genome biology. However, the different caveats of the variants of 3C techniques have limited their scope and the range of scientific fields that could benefit from these approaches. To address these limitations, we present 4Cin, a method to generate 3D models and derive virtual Hi-C (vHi-C) heat maps of genomic loci based on 4C-seq or any kind of 4C-seq-like data, such as those derived from NG Capture-C. 3D genome organization is determined by integrative consideration of the spatial distances derived from as few as four 4C-seq experiments. The 3D models obtained from 4C-seq data, together with their associated vHi-C maps, allow the inference of all chromosomal contacts within a given genomic region, facilitating the identification of Topological Associating Domains (TAD) boundaries. Thus, 4Cin offers a much cheaper, accessible and versatile alternative to other available techniques while providing a comprehensive 3D topological profiling. By studying TAD modifications in genomic structural variants associated to disease phenotypes and performing cross-species evolutionary comparisons of 3D chromatin structures in a quantitative manner, we demonstrate the broad potential and novel range of applications of our method.


Subject(s)
Chromosome Mapping/methods , Computational Biology/methods , Imaging, Three-Dimensional/methods , Chromatin/physiology , Chromosomes , Computer Simulation , Genome , Genomics/methods , Nucleic Acid Conformation , Sequence Analysis, DNA/methods , Software
11.
Genome Biol ; 18(1): 106, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28615069

ABSTRACT

BACKGROUND: The organisation of vertebrate genomes into topologically associating domains (TADs) is believed to facilitate the regulation of the genes located within them. A remaining question is whether TAD organisation is achieved through the interactions of the regulatory elements within them or if these interactions are favoured by the pre-existence of TADs. If the latter is true, the fusion of two independent TADs should result in the rewiring of the transcriptional landscape and the generation of ectopic contacts. RESULTS: We show that interactions within the PAX3 and FOXO1 domains are restricted to their respective TADs in normal conditions, while in a patient-derived alveolar rhabdomyosarcoma cell line, harbouring the diagnostic t(2;13)(q35;q14) translocation that brings together the PAX3 and FOXO1 genes, the PAX3 promoter interacts ectopically with FOXO1 sequences. Using a combination of 4C-seq datasets, we have modelled the three-dimensional organisation of the fused landscape in alveolar rhabdomyosarcoma. CONCLUSIONS: The chromosomal translocation that leads to alveolar rhabdomyosarcoma development generates a novel TAD that is likely to favour ectopic PAX3:FOXO1 oncogene activation in non-PAX3 territories. Rhabdomyosarcomas may therefore arise from cells which do not normally express PAX3. The borders of this novel TAD correspond to the original 5'- and 3'- borders of the PAX3 and FOXO1 TADs, respectively, suggesting that TAD organisation precedes the formation of regulatory long-range interactions. Our results demonstrate that, upon translocation, novel regulatory landscapes are formed allowing new intra-TAD interactions between the original loci involved.


Subject(s)
Forkhead Box Protein O1/genetics , PAX3 Transcription Factor/genetics , Protein Interaction Maps/genetics , Rhabdomyosarcoma, Alveolar/genetics , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Oncogene Proteins, Fusion/genetics , Promoter Regions, Genetic , Protein Domains/genetics , Regulatory Sequences, Nucleic Acid/genetics , Rhabdomyosarcoma, Alveolar/pathology , Translocation, Genetic/genetics
12.
Cell ; 168(3): 400-412.e18, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28129539

ABSTRACT

The structural characterization of protein complexes in their native environment is challenging but crucial for understanding the mechanisms that mediate cellular processes. We developed an integrative approach to reconstruct the 3D architecture of protein complexes in vivo. We applied this approach to the exocyst, a hetero-octameric complex of unknown structure that is thought to tether secretory vesicles during exocytosis with a poorly understood mechanism. We engineered yeast cells to anchor the exocyst on defined landmarks and determined the position of its subunit termini at nanometer precision using fluorescence microscopy. We then integrated these positions with the structural properties of the subunits to reconstruct the exocyst together with a vesicle bound to it. The exocyst has an open hand conformation made of rod-shaped subunits that are interlaced in the core. The exocyst architecture explains how the complex can tether secretory vesicles, placing them in direct contact with the plasma membrane.


Subject(s)
Exocytosis , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Golgi Apparatus/metabolism , Models, Molecular , Secretory Vesicles/metabolism
13.
Nat Genet ; 48(3): 336-41, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26829752

ABSTRACT

The HoxA and HoxD gene clusters of jawed vertebrates are organized into bipartite three-dimensional chromatin structures that separate long-range regulatory inputs coming from the anterior and posterior Hox-neighboring regions. This architecture is instrumental in allowing vertebrate Hox genes to pattern disparate parts of the body, including limbs. Almost nothing is known about how these three-dimensional topologies originated. Here we perform extensive 4C-seq profiling of the Hox cluster in embryos of amphioxus, an invertebrate chordate. We find that, in contrast to the architecture in vertebrates, the amphioxus Hox cluster is organized into a single chromatin interaction domain that includes long-range contacts mostly from the anterior side, bringing distant cis-regulatory elements into contact with Hox genes. We infer that the vertebrate Hox bipartite regulatory system is an evolutionary novelty generated by combining ancient long-range regulatory contacts from DNA in the anterior Hox neighborhood with new regulatory inputs from the posterior side.


Subject(s)
Body Patterning/genetics , Evolution, Molecular , Homeodomain Proteins/biosynthesis , Lancelets/genetics , Animals , Chromatin/genetics , Conserved Sequence/genetics , Extremities/growth & development , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Lancelets/growth & development , Multigene Family , Phylogeny , Vertebrates/genetics , Vertebrates/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...