Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
J Mater Chem B ; 12(19): 4584-4612, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38686396

ABSTRACT

The application of three- and four-dimensional (3D/4D) printing in cancer research represents a significant advancement in understanding and addressing the complexities of cancer biology. 3D/4D materials provide more physiologically relevant environments compared to traditional two-dimensional models, allowing for a more accurate representation of the tumor microenvironment that enables researchers to study tumor progression, drug responses, and interactions with surrounding tissues under conditions similar to in vivo conditions. The dynamic nature of 4D materials introduces the element of time, allowing for the observation of temporal changes in cancer behavior and response to therapeutic interventions. The use of 3D/4D printing in cancer research holds great promise for advancing our understanding of the disease and improving the translation of preclinical findings to clinical applications. Accordingly, this review aims to briefly discuss 3D and 4D printing and their advantages and limitations in the field of cancer. Moreover, new techniques such as 5D/6D printing and artificial intelligence (AI) are also introduced as methods that could be used to overcome the limitations of 3D/4D printing and opened promising ways for the fast and precise diagnosis and treatment of cancer.


Subject(s)
Bioprinting , Neoplasms , Printing, Three-Dimensional , Humans , Neoplasms/pathology , Animals , Tumor Microenvironment
2.
Int J Biol Macromol ; 268(Pt 2): 131829, 2024 May.
Article in English | MEDLINE | ID: mdl-38677670

ABSTRACT

Nanocelluloses exhibit immense potential in catalytic and biomedical applications. Their unique properties, biocompatibility, and versatility make them valuable in various industries, contributing to advancements in environmental sustainability, catalysis, energy conversion, drug delivery, tissue engineering, biosensing/imaging, and wound healing/dressings. Nanocellulose-based catalysts can efficiently remove pollutants from contaminated environments, contributing to sustainable and cleaner ecosystems. These materials can also be utilized as drug carriers, enabling targeted and controlled drug release. Their high surface area allows for efficient loading of therapeutic agents, while their biodegradability ensures safer and gradual release within the body. These targeted drug delivery systems enhance the efficacy of treatments and minimizes side effects. Moreover, nanocelluloses can serve as scaffolds in tissue engineering due to their structural integrity and biocompatibility. They provide a three-dimensional framework for cell growth and tissue regeneration, promoting the development of functional and biologically relevant tissues. Nanocellulose-based dressings have shown great promise in wound healing and dressings. Their ability to absorb exudates, maintain a moist environment, and promote cell proliferation and migration accelerates the wound healing process. Herein, the recent advancements pertaining to the catalytic and biomedical applications of nanocelluloses and their composites are deliberated, focusing on important challenges, advantages, limitations, and future prospects.


Subject(s)
Cellulose , Wound Healing , Cellulose/chemistry , Catalysis , Humans , Wound Healing/drug effects , Biocompatible Materials/chemistry , Tissue Engineering/methods , Nanostructures/chemistry , Animals , Drug Delivery Systems , Drug Carriers/chemistry , Bandages
3.
J Mater Chem B ; 12(18): 4307-4334, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38595268

ABSTRACT

Graphene quantum dots (GQDs) hold great promise for photodynamic and photothermal cancer therapies. Their unique properties, such as exceptional photoluminescence, photothermal conversion efficiency, and surface functionalization capabilities, make them attractive candidates for targeted cancer treatment. GQDs have a high photothermal conversion efficiency, meaning they can efficiently convert light energy into heat, leading to localized hyperthermia in tumors. By targeting the tumor site with laser irradiation, GQD-based nanosystems can induce selective cancer cell destruction while sparing healthy tissues. In photodynamic therapy, light-sensitive compounds known as photosensitizers are activated by light of specific wavelengths, generating reactive oxygen species that induce cancer cell death. GQD-based nanosystems can act as excellent photosensitizers due to their ability to absorb light across a broad spectrum; their nanoscale size allows for deeper tissue penetration, enhancing the therapeutic effect. The combination of photothermal and photodynamic therapies using GQDs holds immense potential in cancer treatment. By integrating GQDs into this combination therapy approach, researchers aim to achieve enhanced therapeutic efficacy through synergistic effects. However, biodistribution and biodegradation of GQDs within the body present a significant hurdle to overcome, as ensuring their effective delivery to the tumor site and stability during treatment is crucial for therapeutic efficacy. In addition, achieving precise targeting specificity of GQDs to cancer cells is a challenging task that requires further exploration. Moreover, improving the photothermal conversion efficiency of GQDs, controlling reactive oxygen species generation for photodynamic therapy, and evaluating their long-term biocompatibility are all areas that demand attention. Scalability and cost-effectiveness of GQD synthesis methods, as well as obtaining regulatory approval for clinical applications, are also hurdles that need to be addressed. Further exploration of GQDs in photothermal and photodynamic cancer therapies holds promise for advancements in targeted drug delivery, personalized medicine approaches, and the development of innovative combination therapies. The purpose of this review is to critically examine the current trends and advancements in the application of GQDs in photothermal and photodynamic cancer therapies, highlighting their potential benefits, advantages, and future perspectives as well as addressing the crucial challenges that need to be overcome for their practical application in targeted cancer therapy.


Subject(s)
Graphite , Neoplasms , Photochemotherapy , Photosensitizing Agents , Photothermal Therapy , Quantum Dots , Graphite/chemistry , Quantum Dots/chemistry , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
4.
Small ; : e2311903, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453672

ABSTRACT

In recent years, there has been growing interest in developing innovative materials and therapeutic strategies to enhance wound healing outcomes, especially for chronic wounds and antimicrobial resistance. Metal-organic frameworks (MOFs) represent a promising class of materials for next-generation wound healing and dressings. Their high surface area, pore structures, stimuli-responsiveness, antibacterial properties, biocompatibility, and potential for combination therapies make them suitable for complex wound care challenges. MOF-based composites promote cell proliferation, angiogenesis, and matrix synthesis, acting as carriers for bioactive molecules and promoting tissue regeneration. They also have stimuli-responsivity, enabling photothermal therapies for skin cancer and infections. Herein, a critical analysis of the current state of research on MOFs and MOF-based composites for wound healing and dressings is provided, offering valuable insights into the potential applications, challenges, and future directions in this field. This literature review has targeted the multifunctionality nature of MOFs in wound-disease therapy and healing from different aspects and discussed the most recent advancements made in the field. In this context, the potential reader will find how the MOFs contributed to this field to yield more effective, functional, and innovative dressings and how they lead to the next generation of biomaterials for skin therapy and regeneration.

5.
Nanomicro Lett ; 16(1): 142, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436795

ABSTRACT

Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics, biomedical devices, and biomimetic systems. These actuators mimic the natural movements of living organisms, aiming to attain  enhanced flexibility, adaptability, and versatility. On the other hand, angle-independent structural color has been achieved through innovative design strategies and engineering approaches. By carefully controlling the size, shape, and arrangement of nanostructures, researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle. One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical, electrical, and optical properties. The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities. Overcoming material compatibility issues, improving color reproducibility, scalability, durability, power supply efficiency, and cost-effectiveness will play vital roles in advancing these technologies. This perspective appraises the development of bioinspired MXene-centered soft actuators with angle-independent structural color in soft robotics.

6.
ACS Biomater Sci Eng ; 10(4): 1892-1909, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38466909

ABSTRACT

MXenes and their composites hold great promise in the field of soft and bone tissue regeneration and engineering (TRE). However, there are challenges that need to be overcome, such as ensuring biocompatibility and controlling the morphologies of MXene-based scaffolds. The future prospects of MXenes in TRE include enhancing biocompatibility through surface modifications, developing multifunctional constructs, and conducting in vivo studies for clinical translation. The purpose of this perspective about MXenes and their composites in soft and bone TRE is to critically evaluate their potential applications and contributions in this field. This perspective aims to provide a comprehensive analysis of the challenges, advantages, limitations, and future prospects associated with the use of MXenes and their composites for soft and bone TRE. By examining the existing literature and research, the review seeks to consolidate the current knowledge and highlight the key findings and advancements in MXene-based TRE. It aims to contribute to the understanding of MXenes' role in promoting soft and bone TRE, addressing the challenges faced in terms of biocompatibility, morphology control, and tissue interactions.


Subject(s)
Bone Regeneration , Bone and Bones , Transition Elements , Engineering , Nitrites
7.
Carbohydr Polym ; 330: 121839, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368115

ABSTRACT

Cancer, a global health challenge of utmost severity, necessitates innovative approaches beyond conventional treatments (e.g., surgery, chemotherapy, and radiation therapy). Unfortunately, these approaches frequently fail to achieve comprehensive cancer control, characterized by inefficacy, non-specific drug distribution, and the emergence of adverse side effects. Nanoscale systems based on natural polymers like chitosan have garnered significant attention as promising platforms for cancer diagnosis and therapy owing to chitosan's inherent biocompatibility, biodegradability, nontoxicity, and ease of functionalization. Herein, recent advancements pertaining to the applications of chitosan nanoparticles in cancer imaging and drug/gene delivery are deliberated. The readers are introduced to conventional non-stimuli-responsive and stimuli-responsive chitosan-based nanoplatforms. External triggers like light, heat, and ultrasound and internal stimuli such as pH and redox gradients are highlighted. The utilization of chitosan nanomaterials as contrast agents or scaffolds for multimodal imaging techniques e.g., magnetic resonance, fluorescence, and nuclear imaging is represented. Key applications in targeted chemotherapy, combination therapy, photothermal therapy, and nucleic acid delivery using chitosan nanoformulations are explored for cancer treatment. The immunomodulatory effects of chitosan and its role in impacting the tumor microenvironment are analyzed. Finally, challenges, prospects, and future outlooks regarding the use of chitosan-based nanosystems are discussed.


Subject(s)
Chitosan , Nanoparticles , Nanostructures , Neoplasms , Humans , Chitosan/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Drug Delivery Systems , Nanostructures/chemistry , Nanoparticles/therapeutic use , Nanoparticles/chemistry , Tumor Microenvironment
8.
J Mater Chem B ; 12(4): 895-915, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38194290

ABSTRACT

MXenes are a class of two-dimensional (2D) materials that have gained significant attention in the field of electronic skins (E-skins). MXene-based composites offer several advantages for E-skins, including high electrical conductivity, mechanical flexibility, transparency, and chemical stability. Their mechanical flexibility allows for conformal integration onto various surfaces, enabling the creation of E-skins that can closely mimic human skin. In addition, their high surface area facilitates enhanced sensitivity and responsiveness to external stimuli, making them ideal for sensing applications. Notably, MXene-based composites can be integrated into E-skins to create sensors that can detect various stimuli, such as temperature, pressure, strain, and humidity. These sensors can be used for a wide range of applications, including health monitoring, robotics, and human-machine interfaces. However, challenges related to scalability, integration, and biocompatibility need to be addressed. One important challenge is achieving long-term stability under harsh conditions such as high humidity. MXenes are susceptible to oxidation, which can degrade their electrical and mechanical properties over time. Another crucial challenge is the scalability of MXene synthesis, as large-scale production methods need to be developed to meet the demand for commercial applications. Notably, the integration of MXenes with other components, such as energy storage devices or flexible electronics, requires further developments to ensure compatibility and optimize overall performance. By addressing issues related to material stability, mechanical flexibility, scalability, sensing performance, and power supply, MXene-based E-skins can develop the fields of healthcare monitoring/diagnostics, prosthetics, motion monitoring, wearable electronics, and human-robot interactions. The integration of MXenes with emerging technologies, such as artificial intelligence or internet of things, can unlock new functionalities and applications for E-skins, ranging from healthcare monitoring to virtual reality interfaces. This review aims to examine the challenges, advantages, and limitations of MXenes and their composites in E-skins, while also exploring the future prospects and potential advancements in this field.


Subject(s)
Artificial Intelligence , Artificial Limbs , Nitrites , Transition Elements , Humans , Electric Conductivity , Electronics
9.
Mater Horiz ; 11(2): 363-387, 2024 01 22.
Article in English | MEDLINE | ID: mdl-37955196

ABSTRACT

Wound healing is a complex process that requires effective management to prevent infections and promote efficient tissue regeneration. In recent years, upconversion nanoparticles (UCNPs) have emerged as promising materials for wound dressing applications due to their unique optical properties and potential therapeutic functionalities. These nanoparticles possess enhanced antibacterial properties when functionalized with antibacterial agents, helping to prevent infections, a common complication in wound healing. They can serve as carriers for controlled drug delivery, enabling targeted release of therapeutic agents to the wound site, allowing for tailored treatment and optimal healing conditions. These nanoparticles possess the ability to convert near-infrared (NIR) light into the visible and/or ultraviolet (UV) regions, making them suitable for therapeutic (photothermal therapy and photodynamic therapy) and diagnostic applications. In the context of wound healing, these nanoparticles can be combined with other materials such as hydrogels, fibers, metal-organic frameworks (MOFs), graphene oxide, etc., to enhance the healing process and prevent the growth of microbial infections. Notably, UCNPs can act as sensors for real-time monitoring of the wound healing progress, providing valuable feedback to healthcare professionals. Despite their potential, the use of UCNPs in wound dressing applications faces several challenges. Ensuring the stability and biocompatibility of UCNPs under physiological conditions is crucial for their effective integration into dressings. Comprehensive safety and efficacy evaluations are necessary to understand potential risks and optimize UCNP-based dressings. Scalability and cost-effectiveness of UCNP synthesis and manufacturing processes are important considerations for practical applications. In addition, efficient incorporation of UCNPs into dressings, achieving uniform distribution, poses an important challenge that needs to be addressed. Future research should prioritize addressing concerns regarding stability and biocompatibility, efficient integration into dressings, rigorous safety evaluation, scalability, and cost-effectiveness. The purpose of this review is to critically evaluate the advantages, challenges, and key properties of UCNPs in wound dressing applications to provide insights into their potential as innovative solutions for enhancing wound healing outcomes. We have provided a detailed description of various types of smart wound dressings, focusing on the synthesis and biomedical applications of UCNPs, specifically their utilization in different types of wound dressings.


Subject(s)
Nanoparticles , Photochemotherapy , Humans , Nanoparticles/therapeutic use , Bandages , Wound Healing , Anti-Bacterial Agents/therapeutic use
10.
Food Chem Toxicol ; 184: 114420, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151072

ABSTRACT

In the present study, we have evaluated the effects of copper (Cu) nanoparticles (NPs) on the primary B-and T-lymphocytes proliferation, cytokine levels, and bio-distribution through in vitro, in vivo and ex-vivo studies to allow the possible exploitations of CuNPs in biomedical applications. CuNPs were characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). The proliferative response of lymphocytes was studied by 3H-thymidine incorporation assay and lymphocyte viability through trypan blue assay. The bio-distribution of CuNPs into lymphoid organs was examined by using ex-vivo imaging system. Cytokine levels in plasma of control and CuNPs treated animal groups were determined by enzyme-linked immunosorbent assay (ELISA) method along with other biochemical analysis. CuNPs significantly suppressed the proliferation of primary splenic and thymic lymphocytes in a dose dependent manner. Ex-vivo imaging exhibited the distribution of CuNPs in spleen and thymus. Oral administration of CuNPs (2 mg and 10 mg/kg body weight) significantly inhibited the proliferation of splenic and thymic lymphocytes along with lowered cytokines levels (TNF-alpha and IL-2) on comparison with controls. The results indicated the significant inhibition of lymphocytes proliferative response and secretion of cytokines, thus unveiling the immunomodulatory effects of CuNPs.


Subject(s)
Metal Nanoparticles , Nanoparticles , Rats , Animals , Copper/pharmacology , Copper/chemistry , Mitogens , Spleen , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Lymphocytes , Cytokines
11.
RSC Adv ; 13(49): 34562-34575, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38024989

ABSTRACT

Metal-organic frameworks (MOFs) and MXenes have demonstrated immense potential for biomedical applications, offering a plethora of advantages. MXenes, in particular, exhibit robust mechanical strength, hydrophilicity, large surface areas, significant light absorption potential, and tunable surface terminations, among other remarkable characteristics. Meanwhile, MOFs possess high porosity and large surface area, making them ideal for protecting active biomolecules and serving as carriers for drug delivery, hence their extensive study in the field of biomedicine. However, akin to other (nano)materials, concerns regarding their environmental implications persist. The number of studies investigating the toxicity and biocompatibility of MXenes and MOFs is growing, albeit further systematic research is needed to thoroughly understand their biosafety issues and biological effects prior to clinical trials. The synthesis of MXenes often involves the use of strong acids and high temperatures, which, if not properly managed, can have adverse effects on the environment. Efforts should be made to minimize the release of harmful byproducts and ensure proper waste management during the production process. In addition, it is crucial to assess the potential release of MXenes into the environment during their use in biomedical applications. For the biomedical applications of MOFs, several challenges exist. These include high fabrication costs, poor selectivity, low capacity, the quest for stable and water-resistant MOFs, as well as difficulties in recycling/regeneration and maintaining chemical/thermal/mechanical stability. Thus, careful consideration of the biosafety issues associated with their fabrication and utilization is vital. In addition to the synthesis and manufacturing processes, the ultimate utilization and fate of MOFs and MXenes in biomedical applications must be taken into account. While numerous reviews have been published regarding the biomedical applications of MOFs and MXenes, this perspective aims to shed light on the key environmental implications and biosafety issues, urging researchers to conduct further research in this field. Thus, the crucial aspects of the environmental implications and biosafety of MOFs and MXenes in biomedicine are thoroughly discussed, focusing on the main challenges and outlining future directions.

12.
J Mater Chem B ; 11(42): 10072-10087, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37873584

ABSTRACT

Genetically engineered bacteria (GEB) have shown significant promise to revolutionize modern medicine. These engineered bacteria with unique properties such as enhanced targeting, versatility, biofilm disruption, reduced drug resistance, self-amplification capabilities, and biodegradability represent a highly promising approach for targeted drug delivery and cancer theranostics. This innovative approach involves modifying bacterial strains to function as drug carriers, capable of delivering therapeutic agents directly to specific cells or tissues. Unlike synthetic drug delivery systems, GEB are inherently biodegradable and can be naturally eliminated from the body, reducing potential long-term side effects or complications associated with residual foreign constituents. However, several pivotal challenges such as safety and controllability need to be addressed. Researchers have explored novel tactics to improve their capabilities and overcome existing challenges, including synthetic biology tools (e.g., clustered regularly interspaced short palindromic repeats (CRISPR) and bioinformatics-driven design), microbiome engineering, combination therapies, immune system interaction, and biocontainment strategies. Because of the remarkable advantages and tangible progress in this field, GEB may emerge as vital tools in personalized medicine, providing precise and controlled drug delivery for various diseases (especially cancer). In this context, future directions include the integration of nanotechnology with GEB, the focus on microbiota-targeted therapies, the incorporation of programmable behaviors, the enhancement in immunotherapy treatments, and the discovery of non-medical applications. In this way, careful ethical considerations and regulatory frameworks are necessary for developing GEB-based systems for targeted drug delivery. By addressing safety concerns, ensuring informed consent, promoting equitable access, understanding long-term effects, mitigating dual-use risks, and fostering public engagement, these engineered bacteria can be employed as promising delivery vehicles in bio- and nanomedicine. In this review, recent advances related to the application of GEB in targeted drug delivery and cancer therapy are discussed, covering crucial challenging issues and future perspectives.


Subject(s)
Drug Delivery Systems , Neoplasms , Humans , Genetic Engineering , Bacteria , Drug Carriers , Neoplasms/drug therapy
13.
Heliyon ; 9(10): e20428, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37810815

ABSTRACT

Chalcones and their derivatives have been widely studied due to their versatile pharmacological and biological activities, such as anti-inflammatory, antibacterial, antiviral, and antitumor effects. These compounds have shown suitable antiviral effects through the selective targeting of a variety of viral enzymes, including lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, protein tyrosine phosphatase, topoisomerase-II, protein kinases, integrase/protease, and lactate/isocitrate dehydrogenase, among others. Chalcones and their derivatives have displayed excellent potential for combating pathogenic bacteria and fungi (especially, multidrug-resistant bacteria). However, relevant mechanisms should be further explored, focusing on inhibitory effects against DNA gyrase B, UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), and efflux pumps (e.g., NorA), among others. In addition, the antifungal and antiparasitic activities of these compounds (e.g., antitrypanosomal and antileishmanial properties) have prompted additional explorations. Nonetheless, systematic analysis of the relevant mechanisms, biosafety issues, and pharmacological properties, as well as clinical translation studies, are vital for practical applications. Herein, recent advancements pertaining to the antibacterial, antiviral, antiparasitic, and antifungal activities of chalcones and their derivatives are deliberated, focusing on the relevant mechanisms of action, crucial challenges, and future prospects. Furthermore, due to the great importance of greener and more sustainable synthesis of these valuable compounds, especially on an industrial scale, the progress made in this field has been briefly discussed. Hopefully, this review can serve as a catalyst for researchers to delve deeper into the exploration and designing of novel chalcone compounds with medicinal properties, especially against pathogenic viruses and multidrug-resistant bacteria as major causes of concern for human health.

14.
Environ Res ; 238(Pt 1): 117122, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37717806

ABSTRACT

The utilization of photocatalysts offers a promising approach for the removal of Cr (VI) and rhodamine dyes. Through the generation of reactive species and subsequent degradation reactions, photocatalysis provides an efficient and environmentally friendly method for the remediation of wastewater. In this study, we have synthesized an n-p-n heterojunction of carbon nitride (C3N4), zinc oxide (ZnO), and black phosphorus (BP) through the sonication-stirring method. The photocatalytic ability of this composite was examined for the decomposition rhodamine B (RhB) and detoxification of hexavalent chromium ion (up to 97% during 80 min) under Xenon irradiation. The results of trapper experiments indicated that the active species were hydroxyl radical (˙OH), electron (e-), and superoxide anion radical (˙O2-). Based on the obtained potential of the lowest unoccupied molecular orbitals (LUMO) and the highest occupied molecular orbital (HOMO) for the mentioned semiconductors, through Mutt-Schottky results, the double Z-scheme mechanism was proposed for the studied process. The electrochemical impedance spectroscopy data exhibited good charge transfer for the evaluated composite versus the pure compounds. The impressive separation of holes and electrons along with the low recombination were confirmed by the responses of photocurrent and quenching the photoluminescence (pl) intensity for the composite, respectively. The current density of the composite recorded 66.6%, 87.3%, and 92% higher than those of BP, C3N4, and ZnO, indicating an excellent electron-hole separation for the ternary composite compared to the pure semiconductors. Diffuse reflectance spectra (DRS) data revealed 2.9, 3.17, 1.15, and 2.63 eV as the band gap values for C3N4, ZnO, BP, and composite. The rate constant of the new composite to remove RhB and reduce hexavalent chromium were about 4.79 and 2.64 times higher than that of C3N4, respectively.


Subject(s)
Zinc Oxide , Phosphorus , Rhodamines , Superoxides
15.
Biomater Sci ; 11(20): 6687-6710, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37646462

ABSTRACT

MXenes and graphene are two-dimensional materials that have gained increasing attention in neuroscience, particularly in sensing, theranostics, and biomedical engineering. Various composites of graphene and MXenes with fascinating thermal, optical, magnetic, mechanical, and electrical properties have been introduced to develop advanced nanosystems for diagnostic and therapeutic applications, as exemplified in the case of biosensors for neurotransmitter detection. These biosensors display high sensitivity, selectivity, and stability, making them promising tools for neuroscience research. MXenes have been employed to create high-resolution neural interfaces for neuroelectronic devices, develop neuro-receptor-mediated synapse devices, and stimulate the electrophysiological maturation of neural circuits. On the other hand, graphene/derivatives exhibit therapeutic applicability in neuroscience, as exemplified in the case of graphene oxide for targeted delivery of therapeutic agents to the brain. While MXenes and graphene have potential benefits in neuroscience, there are also challenges/limitations associated with their use, such as toxicity, environmental impacts, and limited understanding of their properties. In addition, large-scale production and commercialization as well as optimization of reaction/synthesis conditions and clinical translation studies are very important aspects. Thus, it is important to consider the use of these materials in neuroscience research and conduct further research to obtain an in-depth understanding of their properties and potential applications. By addressing issues related to biocompatibility, long-term stability, targeted delivery, electrical interfaces, scalability, and cost-effectiveness, MXenes and graphene have the potential to greatly advance the field of neuroscience and pave the way for innovative diagnostic and therapeutic approaches for neurological disorders. Herein, recent advances in therapeutic and diagnostic applications of graphene- and MXene-based materials in neuroscience are discussed, focusing on important challenges and future prospects.

16.
Environ Res ; 237(Pt 1): 116910, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37597834

ABSTRACT

Photocatalysis is considered as an eco-friendly and sustainable strategy, since it uses abundant light for the advancement of the reaction, which is freely accessible and is devoid of environmental pollution. During the last decades, (nano)photocatalysts have gained broad industrial applications in terms of purification and detoxification of water as well as production of green fuels and hydrogen gas due to their special attributes. The degradation or remediation of toxic and hazardous compounds from the environment or changing them into non-toxic entities is a significant endeavor and necessary for the safety of humans, animals, and the environment. Black phosphorus (BP), a two-dimensional single-element material, has a marvelous structure, tunable bandgap, changeable morphology from bulk to nanosheet/quantum dot, and unique physicochemical properties, which makes it attractive material for photocatalytic applications, especially for sustainable development purposes. Since it can serve as a photocatalyst with or without coupling with other semiconductors, various aspects for multidimensional exploitation of BP are deliberated including their preparation via solvothermal, ball milling, calcination, and sonication methods to obtain BP from red phosphorus. The techniques for improving the photocatalytic and stability of BP-based composites are discussed along with their multifaceted applications for environmental remediation, pollution degradation, water splitting, N2 fixation, CO2 reduction, bacterial disinfection, H2 generation, and photodynamic therapy. Herein, most recent advancements pertaining to the photocatalytic applications of BP-based photocatalyst are cogitated, with a focus on their synthesis and properties as well as crucial challenges and future perspectives.

17.
Soft Matter ; 19(33): 6196-6212, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37566389

ABSTRACT

MXenes with their unique electronic, optical, chemical, and mechanical properties have shown great promise in soft robotics. MXene-based soft actuators have been designed to display ultrafast actuations and recovery speeds as well as angle-independent structural colors in response to vapor. Several studies have developed soft actuators by combining MXenes with other materials to mimic the movement of natural organisms. Thus, MXene-based soft actuators have the potential to revolutionize the field of soft robotics and flexible electronics (e.g., wearable devices and artificial muscles). MXene-based artificial muscles have been explored for use in kinetic soft robotics as actuators in microsystems requiring exceptional compliance. MXene-based sensors and actuators have already been developed for human-like sensors and photodetection. However, there are still challenges that need to be addressed in such applications, such as the design of stretchable and compliant robotic skins with a high-level functional integration for soft robotics. The integration of various devices, such as power sources, sensors, and actuators, into soft robotics is another crucial challenge. Despite the excellent stretchability and tensile strength of MXene-based composites, there is a vital need to develop their mechanical and electrochemical features and grant them multi-functionalities. Herein, recent developments pertaining to the applications of MXenes and their composites in soft robotics are discussed with a focus on the important challenges and future perspectives.

19.
J Control Release ; 359: 326-346, 2023 07.
Article in English | MEDLINE | ID: mdl-37290724

ABSTRACT

Zeolitic imidazolate frameworks (ZIFs), as a very well-known subset of metal-organic frameworks (MOFs), have attracted considerable attention in biomedicine due to their unique structural features such as tunable pore size, high surface area, high thermal stability, biodegradability, and biocompatibility. Moreover, it is possible to load a wide variety of therapeutic agents, drugs, and biomolecules into ZIF structures during the fabrication process owing to the ZIFs' porous structure and concise synthesis methods under mild conditions. This review focuses on the most recent advances in the bioinspiration of ZIFs and ZIF-integrated nanocomposites in boosting antibacterial efficiencies and regenerative medicine capabilities. The first part summarizes the various synthesis routes and physicochemical properties of ZIFs, including size, morphology, surface, and pore size. The recent advancements in the antibacterial aspects of using ZIFs and ZIF-integrated nanocomposites as carriers for antibacterial agents and drug cargo are elaborated. Moreover, the antibacterial mechanisms based on the factors affecting the antibacterial properties of ZIFs such as oxidative stress, internal and external triggers, the effect of metal ions, and their associated combined therapies, are discussed. The recent trends of ZIFs and their composites in tissue regeneration, especially bone regeneration and wound healing, are also reviewed with in-depth perspectives. Finally, the biological safety aspects of ZIFs, the latest reports about their toxicity, and the future prospects of these materials in regenerative medicine have been discussed.


Subject(s)
Metal-Organic Frameworks , Zeolites , Imidazoles/pharmacology , Imidazoles/chemistry , Metal-Organic Frameworks/chemistry , Wound Healing
20.
Environ Res ; 231(Pt 3): 116287, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37263475

ABSTRACT

Photocatalysis can be considered as a green technology owing to its excellent potential for sustainability and fulfilling several principles of green chemistry. This process uses light radiation as the primary energy source, preventing or reducing the requirement for artificial light sources and exogenous catalytic entities. Photocatalysis has promising applications in biomedicine such as drug delivery, biosensing, tissue engineering, cancer therapeutics, etc. In targeted cancer therapeutics, photocatalysis can be employed in photodynamic therapy to form reactive oxygen species that damage cancerous cells' structure. Nanophotocatalysts can be used in targeted drug delivery, showing potential applications in nuclear-targeted drug delivery along with specific delivery of chemotherapeutics to cancer cells or tumor sites. On the other hand, in tissue engineering, nanophotocatalysts can be employed in designing scaffolds that promote cell growth and tissue regeneration. However, some important challenges pertaining to the performance of photocatalysis, large-scale production of nanophotocatalysts, optimization of reaction/synthesis conditions, long-term biosafety issues, stability, clinical translation, etc. still need further explorations. Herein, the most recent advancements pertaining to the biomedical applications of nanophotocatalysts are reflected, focusing on drug delivery, tissue engineering, biosensing, and cancer therapeutic potentials.


Subject(s)
Neoplasms , Tissue Engineering , Humans , Drug Delivery Systems , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...