Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38978297

ABSTRACT

Pore topology and chemistry play crucial roles in the adsorption characteristics of metal-organic frameworks (MOFs). To deepen our understanding of the interactions between MOFs and CO2 during this process, we systematically investigate the adsorption properties of a group of pyrene-based MOFs. These MOFs feature Zn(II) as the metal ion and employ a pyrene-based ligand, specifically 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy). Including different additional ligands leads to frameworks with distinctive structural and chemical features. By comparing these structures, we could isolate the role that pore size, the presence of open-metal sites (OMS), metal-oxygen bridges, and framework charges play in the CO2 adsorption of these MOFs. Frameworks with constricted pore structures display a phenomenon known as the confinement effect, fostering stronger MOF-CO2 interactions and higher uptakes at low pressures. In contrast, entropic effects dominate at elevated pressures, and the MOF's pore volume becomes the driving factor. Through analysis of the CO2 uptakes of the benchmark materials ─some with narrower pores and others with larger pore volumes─it becomes evident that structures with narrower pores and high binding energies excel at low pressures. In contrast, those with larger volumes perform better at elevated pressures. Moreover, this research highlights that open-metal sites and inherent charges within the frameworks of ionic MOFs stand out as CO2-philic characteristics.

2.
Chimia (Aarau) ; 77(12): 836-841, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38131407

ABSTRACT

Plastics materials are essential in every part of our lives, resulting in their increasing production and consumption. Consequently, recycling of plastics has been of great importance in the last decades. Among all types of plastics, polyesters have become very appealing for numerous kinds of applications, making their recycling crucial. Several techniques have been developed for the recycling of plastics with the aim of eliminating the waste accumulated, as well as to create a circular economy.

3.
RSC Sustain ; 1(3): 494-503, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37215582

ABSTRACT

Metal-Organic Framework (MOF)-derived TiO2, synthesised through the calcination of MIL-125-NH2, is investigated for its potential as a CO2 photoreduction catalyst. The effect of the reaction parameters: irradiance, temperature and partial pressure of water was investigated. Using a two-level design of experiments, we were able to evaluate the influence of each parameter and their potential interactions on the reaction products, specifically the production of CO and CH4. It was found that, for the explored range, the only statistically significant parameter is temperature, with an increase in temperature being correlated to enhanced production of both CO and CH4. Over the range of experimental settings explored, the MOF-derived TiO2 displays high selectivity towards CO (98%), with only a small amount of CH4 (2%) being produced. This is notable when compared to other state-of-the-art TiO2 based CO2 photoreduction catalysts, which often showcase lower selectivity. The MOF-derived TiO2 was found to have a peak production rate of 8.9 × 10-4 µmol cm-2 h-1 (2.6 µmol g-1 h-1) and 2.6 × 10-5 µmol cm-2 h-1 (0.10 µmol g-1 h-1) for CO and CH4, respectively. A comparison is made to commercial TiO2, P25 (Degussa), which was shown to have a similar activity towards CO production, 3.4 × 10-3 µmol cm-2 h-1 (5.9 µmol g-1 h-1), but a lower selectivity preference for CO (3 : 1 CH4 : CO) than the MOF-derived TiO2 material developed here. This paper showcases the potential for MIL-125-NH2 derived TiO2 to be further developed as a highly selective CO2 photoreduction catalyst for CO production.

4.
Chem Mater ; 34(9): 3893-3901, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35573112

ABSTRACT

Mg-Al mixed metal oxides (MMOs), derived from the decomposition of layered double hydroxides (LDHs), have been purposed as adsorbents for CO2 capture of industrial plant emissions. To aid in the design and optimization of these materials for CO2 capture at 200 °C, we have used a combination of solid-state nuclear magnetic resonance (ssNMR) and density functional theory (DFT) to characterize the CO2 gas sorption products and determine the various sorption sites in Mg-Al MMOs. A comparison of the DFT cluster calculations with the observed 13C chemical shifts of the chemisorbed products indicates that mono- and bidentate carbonates are formed at the Mg-O sites with adjacent Al substitution of an Mg atom, while the bicarbonates are formed at Mg-OH sites without adjacent Al substitution. Quantitative 13C NMR shows an increase in the relative amount of strongly basic sites, where the monodentate carbonate product is formed, with increasing Al/Mg molar ratios in the MMOs. This detailed understanding of the various basic Mg-O sites presented in MMOs and the formation of the carbonate, bidentate carbonate, and bicarbonate chemisorbed species yields new insights into the mechanism of CO2 adsorption at 200 °C, which can further aid in the design and capture capacity optimization of the materials.

5.
Commun Chem ; 5(1): 170, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36697847

ABSTRACT

The synthesis of metal-organic frameworks (MOFs) is often complex and the desired structure is not always obtained. In this work, we report a methodology that uses a joint machine learning and experimental approach to optimize the synthesis conditions of Al-PMOF (Al2(OH)2TCPP) [H2TCPP = meso-tetra(4-carboxyphenyl)porphine], a promising material for carbon capture applications. Al-PMOF was previously synthesized using a hydrothermal reaction, which gave a low throughput yield due to its relatively long reaction time (16 hours). Here, we use a genetic algorithm to carry out a systematic search for the optimal synthesis conditions and a microwave-based high-throughput robotic platform for the syntheses. We show that, in just two generations, we could obtain excellent crystallinity and yield close to 80% in a much shorter reaction time (50 minutes). Moreover, by analyzing the failed and partially successful experiments, we could identify the most important experimental variables that determine the crystallinity and yield.

6.
ACS Appl Mater Interfaces ; 13(48): 57118-57131, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34817166

ABSTRACT

Metal-organic frameworks (MOFs) are promising materials for the photocatalytic H2 evolution reaction (HER) from water. To find the optimal MOF for a photocatalytic HER, one has to consider many different factors. For example, studies have emphasized the importance of light absorption capability, optical band gap, and band alignment. However, most of these studies have been carried out on very different materials. In this work, we present a combined experimental and computation study of the photocatalytic HER performance of a set of isostructural pyrene-based MOFs (M-TBAPy, where M = Sc, Al, Ti, and In). We systematically studied the effects of changing the metal in the node on the different factors that contribute to the HER rate (e.g., optical properties, the band structure, and water adsorption). In addition, for Sc-TBAPy, we also studied the effect of changes in the crystal morphology on the photocatalytic HER rate. We used this understanding to improve the photocatalytic HER efficiency of Sc-TBAPy, to exceed the one reported for Ti-TBAPy, in the presence of a co-catalyst.

7.
ACS Appl Mater Interfaces ; 13(12): 14239-14247, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33749235

ABSTRACT

A strategy for enhancing the photocatalytic performance of MOF-based systems (MOF: metal-organic framework) is developed through the construction of MOF/MOF heterojunctions. The combination of MIL-167 with MIL-125-NH2 leads to the formation of MIL-167/MIL-125-NH2 heterojunctions with improved optoelectronic properties and efficient charge separation. MIL-167/MIL-125-NH2 outperforms its single components MIL-167 and MIL-125-NH2, in terms of photocatalytic H2 production (455 versus 0.8 and 51.2 µmol h-1 g-1, respectively), under visible-light irradiation, without the use of any cocatalysts. This is attributed to the appropriate band alignment of these MOFs, the enhanced visible-light absorption, and long charge separation within MIL-167/MIL-125-NH2. Our findings contribute to the discovery of novel MOF-based photocatalytic systems that can harvest solar energy and exhibit high catalytic activities in the absence of cocatalysts.

8.
Chem Soc Rev ; 50(5): 3143-3177, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33475661

ABSTRACT

Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.

9.
Chem Sci ; 11(16): 4164-4170, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-34122879

ABSTRACT

Metal organic frameworks (MOFs) are increasingly used in applications that rely on the optical and electronic properties of these materials. These applications require a fundamental understanding on how the structure of these materials, and in particular the electronic interactions of the metal node and organic linker, determines these properties. Herein, we report a combined experimental and computational study on two families of lanthanide-based MOFs: Ln-SION-1 and Ln-SION-2. Both comprise the same metal and ligand but with differing structural topologies. In the Ln-SION-2 series the optical absorption is dominated by the ligand and using different lanthanides has no impact on the absorption spectrum. The Ln-SION-1 series shows a completely different behavior in which the ligand and the metal node do interact electronically. By changing the lanthanide in Ln-SION-1, we were able to tune the optical absorption from the UV region to absorption that includes a large part of the visible region. For the early lanthanides we observe intraligand (electronic) transitions in the UV region, while for the late lanthanides a new band appears in the visible. DFT calculations showed that the new band in the visible originates in the spatial orbital overlap between the ligand and metal node. Our quantum calculations indicated that Ln-SION-1 with late lanthanides might be (photo)conductive. Experimentally, we confirm that these materials are weakly conductive and that with an appropriate co-catalysts they can generate hydrogen from a water solution using visible light. Our experimental and theoretical analysis provides fundamental insights for the rational design of Ln-MOFs with the desired optical and electronic properties.

10.
Nature ; 576(7786): 253-256, 2019 12.
Article in English | MEDLINE | ID: mdl-31827290

ABSTRACT

Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation1. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions2, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources3. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen4-7 do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive8,9. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.

11.
J Vis Exp ; (136)2018 06 14.
Article in English | MEDLINE | ID: mdl-29985339

ABSTRACT

We demonstrate a versatile protocol to be used for determining the effectiveness of photocatalysts in degrading indoor air concentration (ppb) volatile organic carbons (VOCs), illustrating this with a titanium dioxide based catalyst, and the VOC 2-propanol. The protocol takes advantage of field asymmetric ion mobility spectroscopy (FAIMS), an analysis tool that is capable of continuously identifying and monitoring the concentration of VOCs such as 2-propanol and acetone at the ppb level. The continuous nature of FAIMS allows detailed kinetic analysis, and long-term reactions, offering a significant advantage over gas chromatography, a batch process traditionally used in air purification characterization. The use of FAIMS in photocatalytic air purification has only recently been used for the first time, and with the protocol illustrated here, the flexibility in allowing alternative VOCs and photocatalysts to be tested using comparable protocols offers a unique system to elucidate photocatalytic air purification reactions at low concentrations.


Subject(s)
2-Propanol/chemistry , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Ion Mobility Spectrometry/methods , Photochemical Processes
12.
J Am Chem Soc ; 134(50): 20466-78, 2012 Dec 19.
Article in English | MEDLINE | ID: mdl-23121122

ABSTRACT

The reaction between Zn and a pyrene-based ligand decorated with benzoate fragments (H(4)TBAPy) yields a 2D layered porous network with the metal coordination based on a paddlewheel motif. Upon desolvation, the structure undergoes a significant and reversible structural adjustment with a corresponding reduction in crystallinity. The combination of computationally assisted structure determination and experimental data analysis of the desolvated phase revealed a structural change in the metal coordination geometry from square-pyramidal to tetrahedral. Simulations of desolvation showed that the local distortion of the ligand geometry followed by the rotation and displacement of the pyrene core permits the breakup of the metal-paddlewheel motifs and the formation of 1D Zn-O chains that cross-link adjacent layers, resulting in a dimensionality change from the 2D layered structure to a 3D structure. Constrained Rietveld refinement of the powder X-ray diffraction pattern of the desolvated phase and the use of other analytical techniques such as porosity measurements, (13)C CP MAS NMR spectroscopy, and fluorescence spectroscopy strongly supported the observed structural transformation. The 3D network is stable up to 425 °C and is permanently porous to CO(2) with an apparent BET surface area of 523(8) m(2)/g (p/p° = 0.02-0.22). Because of the hydrophobic nature, size, and shape of the pores of the 3D framework, the adsorption behavior of the structure toward p-xylene and m-xylene was studied, and the results indicated that the shape of the isotherm and the kinetics of the adsorption process are determined mainly by the shape of the xylene isomers, with each xylene isomer interacting with the host framework in a different manner.


Subject(s)
Organic Chemicals/chemistry , Zinc/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Spectrometry, Fluorescence
14.
J Am Chem Soc ; 133(4): 1016-32, 2011 Feb 02.
Article in English | MEDLINE | ID: mdl-21158451

ABSTRACT

Charge transfer between metal ions occupying distinct crystallographic sublattices in an ordered material is a strategy to confer visible light absorption on complex oxides to generate potentially catalytically active electron and hole charge carriers. CaCu3Ti4O12 has distinct octahedral Ti4+ and square planar Cu2+ sites and is thus a candidate material for this approach. The sol−gel synthesis of high surface area CaCu3Ti4O12 and investigation of its optical absorption and photocatalytic reactivity with model pollutants are reported. Two gaps of 2.21 and 1.39 eV are observed in the visible region. These absorptions are explained by LSDA+U electronic structure calculations, including electron correlation on the Cu sites, as arising from transitions from a Cu-hybridized O 2p-derived valence band to localized empty states on Cu (attributed to the isolation of CuO4 units within the structure of CaCu3Ti4O12) and to a Ti-based conduction band. The resulting charge carriers produce selective visible light photodegradation of 4-chlorophenol (monitored by mass spectrometry) by Pt-loaded CaCu3Ti4O12 which is attributed to the chemical nature of the photogenerated charge carriers and has a quantum yield comparable with commercial visible light photocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...