Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Front Toxicol ; 5: 1200881, 2023.
Article in English | MEDLINE | ID: mdl-37435546

ABSTRACT

Introduction: Glyphosate is a widely used, non-selective herbicide. Glyphosate and glyphosate-based herbicides (GBHs) are considered safe for non-target organisms and environmentally benign at currently allowed environmental exposure levels. However, their increased use in recent years has triggered questions about possible adverse outcomes due to low dose chronic exposure in animals and humans. While the toxicity of GBHs has primarily been attributed to glyphosate, other largely unstudied components of GBHs may be inherently toxic or could act synergistically with glyphosate. Thus, comparative studies of glyphosate and GBHs are needed to parse out their respective toxicity. Methods: We performed such a comparative screen using pure glyphosate and two popular GBHs at the same glyphosate acid equivalent concentrations in the freshwater planarian Dugesia japonica. This planarian has been shown to be a useful model for both ecotoxicology and neurotoxicity/developmental neurotoxicity studies. Effects on morphology and various behavioral readouts were obtained using an automated screening platform, with assessments on day 7 and day 12 of exposure. Adult and regenerating planarians were screened to allow for detection of developmentally selective effects. Results: Both GBHs were more toxic than pure glyphosate. While pure glyphosate induced lethality at 1 mM and no other effects, both GBHs induced lethality at 316 µM and sublethal behavioral effects starting at 31.6 µM in adult planarians. These data suggest that glyphosate alone is not responsible for the observed toxicity of the GBHs. Because these two GBHs also include other active ingredients, namely diquat dibromide and pelargonic acid, respectively, we tested whether these compounds were responsible for the observed effects. Screening of the equivalent concentrations of pure diquat dibromide and pure pelargonic acid revealed that the toxicity of either GBH could not be explained by the active ingredients alone. Discussion: Because all compounds induced toxicity at concentrations above allowed exposure levels, our data indicates that glyphosate/GBH exposure is not an ecotoxicological concern for D. japonica planarians. Developmentally selective effects were not observed for all compounds. Together, these data demonstrate the usefulness of high throughput screening in D. japonica planarians for assessing various types of toxicity, especially for comparative studies of several chemicals across different developmental stages.

2.
Curr Protoc ; 3(3): e684, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36877155

ABSTRACT

Due to their strong regenerative capabilities, freshwater planarians are a well-suited model system for studying the effects of chemicals on stem cell biology and regeneration. After amputation, a planarian will regenerate the missing body parts within 1 to 2 weeks. Because planarians have a distinct head morphology that can be easily identified, head and eye regeneration has been a popular qualitative measure of toxicity. However, qualitative measures can only detect strong defects. Here, we present protocols for quantifying the rate of blastema growth to measure regeneration defects for assessment of chemical toxicity. Following amputation, a regenerative blastema forms at the wound site. Over the course of several days, the blastema grows and subsequently re-forms the missing anatomical structures. This growth can be measured by imaging the regenerating planarian. As the blastema tissue is unpigmented, it can be easily distinguished from the remaining pigmented body using standard image analysis techniques. Basic Protocol 1 provides a step-by-step guide for imaging regenerating planarians over several days of regeneration. Basic Protocol 2 describes the necessary steps for the quantification of blastema size using freeware. It is accompanied by video tutorials to facilitate adaptation. Basic Protocol 3 shows how to calculate the growth rate using linear curve fitting in a spreadsheet. The ease of implementation and low cost make this procedure suitable for an undergraduate laboratory teaching setting, in addition to typical research settings. Although we focus on head regeneration in Dugesia japonica, these protocols are adaptable to other wound sites and planarian species. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Imaging planarians during regeneration Basic Protocol 2: Quantitative analysis of blastema size with ImageJ Basic Protocol 3: Quantification of blastema growth rate.


Subject(s)
Planarians , Animals , Nerve Regeneration , Acclimatization , Amputation, Surgical
3.
Curr Protoc ; 3(2): e674, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36799654

ABSTRACT

The serine hydrolase acetylcholinesterase (AChE) is an important neuronal enzyme which catalyzes the hydrolysis of the neurotransmitter acetylcholine and other choline esters. The breakdown of acetylcholine by AChE terminates synaptic transmission and regulates neuromuscular communication. AChE inhibition is a common mode of action of various insecticides, such as carbamates and organophosphorus pesticides. Freshwater planarians, especially the species Dugesia japonica, have been shown to possess AChE activity and to be a suitable alternative model for studying the effects of pesticides in vivo. AChE activity can be quantified in homogenates using the Ellman assay. However, this biochemical assay requires specialized equipment and large numbers of planarians. Here, we present a protocol for visualizing AChE activity in individual planarians. Activity staining can be completed in several hours and can be executed using standard laboratory equipment (a fume hood, nutator, and light microscope with imaging capability). We describe the steps for preparing the reagents, and the staining and imaging of the planarians. Planarians are treated with 10% acetic acid and fixed with 4% paraformaldehyde and then incubated in a staining solution containing the substrate acetylthiocholine. After incubation in the staining solution for 3.5 hr on a nutator at 4°C, or stationary on ice, planarians are washed and mounted for imaging. Using exposure to an organophosphorus pesticide as an example, we show how AChE inhibition leads to a loss of staining. Thus, this simple method can be used to qualitatively evaluate AChE inhibition due to chemical exposure or RNA interference, providing a new tool for mechanistic studies of effects on the cholinergic system. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparing the staining solution Basic Protocol 2: Fixing, staining, and imaging whole-mount planarian specimens for visualization of acetylcholinesterase activity.


Subject(s)
Pesticides , Planarians , Animals , Acetylcholinesterase/metabolism , Acetylcholinesterase/pharmacology , Planarians/metabolism , Organophosphorus Compounds/pharmacology , Pesticides/pharmacology , Acetylcholine/pharmacology , Fresh Water
4.
Neurotoxicol Teratol ; 96: 107148, 2023.
Article in English | MEDLINE | ID: mdl-36539103

ABSTRACT

There is a lack of data on the effects of chronic exposure to common drugs and stimulants on the developing nervous system. Freshwater planarians have emerged as a useful invertebrate model amenable to high-throughput behavioral phenotyping to assay chemical safety in adult and developing brains. Here, we leverage the unique strength of the system to test in parallel for effects on the adult and developing nervous system, by screening ten common drugs and stimulants (forskolin, clenbuterol, LRE-1, MDL-12,330A, adenosine, caffeine, histamine, mianserin, fluoxetine and sertraline) using the asexual freshwater planarian Dugesia japonica. The compounds were tested up to 100 µM nominal concentration for their effects on planarian morphology and behavior. Quantitative phenotypic assessments were performed on days 7 and 12 of exposure using an automated screening platform. The antidepressants sertraline and fluoxetine were the most potent to induce lethality, with significant lethality observed at 10 µM. All ten compounds caused sublethal morphological and/or behavioral effects, with the most effects, in terms of potency and breadth of endpoints affected, seen with mianserin and fluoxetine. Four of the compounds (forskolin, clenbuterol, mianserin, and fluoxetine) were developmentally selective, causing effects at lower concentrations in regenerating planarians. Of these, fluoxetine showed the greatest differences between the two developmental stages, inducing many behavioral endpoints in regenerating planarians but only a few in adult planarians. While some of these behavioral effects may be due to neuroefficacy, these results substantiate the need for better evaluation of the safety of these common drugs on the developing nervous system.


Subject(s)
Clenbuterol , Planarians , Animals , Fluoxetine/toxicity , Mianserin/pharmacology , Clenbuterol/pharmacology , Colforsin/pharmacology , Sertraline
5.
Curr Protoc ; 2(12): e637, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36571713

ABSTRACT

Traditional mammalian testing is too time- and cost-intensive to keep up with the large number of environmental chemicals needing assessment. This has led to a dearth of information about the potential adverse effects of these chemicals, especially on the developing brain. Thus, there is an urgent need for rapid and cost-effective neurotoxicity and developmental neurotoxicity testing. Because of the complexity of the brain, metabolically competent organismal models are necessary to understand the effects of chemicals on nervous system development and function on a systems level. In this overview, we showcase asexual freshwater planarians as an alternative invertebrate ("non-animal") organismal model for neurotoxicology research. Planarians have long been used to study the effects of chemicals on regeneration and behavior. But they have only recently moved back into the spotlight because modern molecular and computational approaches now enable quantitative high-content and high-throughput toxicity studies. Here, we present a short history of the use of planarians in toxicology research, highlight current techniques to measure toxicity qualitatively and quantitatively in planarians, and discuss how to further promote this non-animal organismal system into mainstream toxicology research. The articles in this collection will help work towards this goal by providing detailed protocols that can be adopted by the community to standardize planarian toxicity testing. © 2022 Wiley Periodicals LLC.


Subject(s)
Neurotoxicity Syndromes , Planarians , Animals , Planarians/physiology , Invertebrates , Neurotoxicity Syndromes/etiology , Toxicity Tests/methods , Brain , Mammals
6.
Front Toxicol ; 4: 948455, 2022.
Article in English | MEDLINE | ID: mdl-36267428

ABSTRACT

Organophosphorus pesticides (OPs) are a chemically diverse class of commonly used insecticides. Epidemiological studies suggest that low dose chronic prenatal and infant exposures can lead to life-long neurological damage and behavioral disorders. While inhibition of acetylcholinesterase (AChE) is the shared mechanism of acute OP neurotoxicity, OP-induced developmental neurotoxicity (DNT) can occur independently and/or in the absence of significant AChE inhibition, implying that OPs affect alternative targets. Moreover, different OPs can cause different adverse outcomes, suggesting that different OPs act through different mechanisms. These findings emphasize the importance of comparative studies of OP toxicity. Freshwater planarians are an invertebrate system that uniquely allows for automated, rapid and inexpensive testing of adult and developing organisms in parallel to differentiate neurotoxicity from DNT. Effects found only in regenerating planarians would be indicative of DNT, whereas shared effects may represent neurotoxicity. We leverage this unique feature of planarians to investigate potential differential effects of OPs on the adult and developing brain by performing a comparative screen to test 7 OPs (acephate, chlorpyrifos, dichlorvos, diazinon, malathion, parathion and profenofos) across 10 concentrations in quarter-log steps. Neurotoxicity was evaluated using a wide range of quantitative morphological and behavioral readouts. AChE activity was measured using an Ellman assay. The toxicological profiles of the 7 OPs differed across the OPs and between adult and regenerating planarians. Toxicological profiles were not correlated with levels of AChE inhibition. Twenty-two "mechanistic control compounds" known to target pathways suggested in the literature to be affected by OPs (cholinergic neurotransmission, serotonin neurotransmission, endocannabinoid system, cytoskeleton, adenyl cyclase and oxidative stress) and 2 negative controls were also screened. When compared with the mechanistic control compounds, the phenotypic profiles of the different OPs separated into distinct clusters. The phenotypic profiles of adult vs. regenerating planarians exposed to the OPs clustered differently, suggesting some developmental-specific mechanisms. These results further support findings in other systems that OPs cause different adverse outcomes in the (developing) brain and build the foundation for future comparative studies focused on delineating the mechanisms of OP neurotoxicity in planarians.

9.
Arch Toxicol ; 96(12): 3233-3243, 2022 12.
Article in English | MEDLINE | ID: mdl-36173421

ABSTRACT

Organophosphorus pesticides (OPs) are a chemically diverse class of insecticides that inhibit acetylcholinesterase (AChE). Many OPs require bioactivation to their active oxon form via cytochrome P450 to effectively inhibit AChE. OP toxicity can be mitigated by detoxification reactions performed by carboxylesterase and paraoxonase. The relative extent of bioactivation to detoxification varies among individuals and between species, leading to differential susceptibility to OP toxicity. Because of these species differences, it is imperative to characterize OP metabolism in model systems used to assess OP toxicity. We have shown that the asexual freshwater planarian Dugesia japonica is a suitable model to assess OP neurotoxicity and developmental neurotoxicity via rapid, automated testing of adult and developing organisms in parallel using morphological and behavioral endpoints. D. japonica has two cholinesterase enzymes with intermediate properties between AChE and butyrylcholinesterase that are sensitive to OP inhibition. Here, we demonstrate that D. japonica contains the major OP metabolic machinery to be a relevant model for OP neurotoxicity studies. Adult and regenerating D. japonica can bioactivate chlorpyrifos and diazinon into their respective oxons. Significant AChE inhibition was only observed after in vivo metabolic activation but not when the parent OPs were directly added to planarian homogenate using the same concentrations and timing. Using biochemical assays, we found that D. japonica has both carboxylesterase (24 nmol/(min*mg protein)) and paraoxonase (60 pmol/(min*mg protein)) activity. We show that planarian carboxylesterase activity is distinct from cholinesterase activity using benzil and tacrine. These results further support the use of D. japonica for OP toxicity studies.


Subject(s)
Chlorpyrifos , Insecticides , Neurotoxicity Syndromes , Pesticides , Planarians , Humans , Animals , Pesticides/toxicity , Pesticides/metabolism , Diazinon/toxicity , Chlorpyrifos/toxicity , Butyrylcholinesterase , Acetylcholinesterase , Organophosphorus Compounds/toxicity , Organophosphorus Compounds/metabolism , Insecticides/toxicity , Insecticides/metabolism , Aryldialkylphosphatase , Tacrine , Carboxylic Ester Hydrolases , Cytochrome P-450 Enzyme System/metabolism , Fresh Water , Cholinesterase Inhibitors/toxicity
10.
Phys Biol ; 19(1)2021 11 11.
Article in English | MEDLINE | ID: mdl-34638110

ABSTRACT

Asexual freshwater planarians reproduce by transverse bisection (binary fission) into two pieces. This process produces a head and a tail, which fully regenerate within 1-2 weeks. How planarians split into two offspring-using only their musculature and substrate traction-is a challenging biomechanics problem. We found that three different species,Dugesia japonica,Girardia tigrinaandSchmidtea mediterranea, have evolved three different mechanical solutions to self-bisect. Using time lapse imaging of the fission process, we quantitatively characterize the main steps of division in the three species and extract the distinct and shared key features. Across the three species, planarians actively alter their body shape, regulate substrate traction, and use their muscles to generate tensile stresses large enough to overcome the ultimate tensile strength of the tissue. Moreover, we show thathoweach planarian species divides dictates how resources are split among its offspring. This ultimately determines offspring survival and reproductive success. Thus, heterospecific differences in the mechanics of self-bisection of individual worms explain the observed differences in the population reproductive strategies of different planarian species.


Subject(s)
Planarians , Animals , Reproduction, Asexual
11.
Toxicol Sci ; 183(1): 14-35, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34109416

ABSTRACT

Originally developed to inform the acute toxicity of chemicals on fish, the zebrafish embryotoxicity test (ZET) has also been proposed for assessing the prenatal developmental toxicity of chemicals, potentially replacing mammalian studies. Although extensively evaluated in primary studies, a comprehensive review summarizing the available evidence for the ZET's capacity is lacking. Therefore, we conducted a systematic review of how well the presence or absence of exposure-related findings in the ZET predicts prenatal development toxicity in studies with rats and rabbits. A two-tiered systematic review of the developmental toxicity literature was performed, a review of the ZET literature was followed by one of the mammalian literature. Data were extracted using DistillerSR, and study validity was assessed with an amended SYRCLE's risk-of-bias tool. Extracted data were analyzed for each species and substance, which provided the basis for comparing the 2 test methods. Although limited by the number of 24 included chemicals, our results suggest that the ZET has potential to identify chemicals that are mammalian prenatal developmental toxicants, with a tendency for overprediction. Furthermore, our analysis confirmed the need for further standardization of the ZET. In addition, we identified contextual and methodological challenges in the application of systematic review approaches to toxicological questions. One key to overcoming these challenges is a transition to more comprehensive and transparent planning, conduct and reporting of toxicological studies. The first step toward bringing about this change is to create broad awareness in the toxicological community of the need for and benefits of more evidence-based approaches.


Subject(s)
Toxicity Tests , Zebrafish , Animals , Female , Pregnancy , Rabbits , Rats
12.
J Vis Exp ; (161)2020 07 30.
Article in English | MEDLINE | ID: mdl-32804171

ABSTRACT

Freshwater planarians normally glide smoothly through ciliary propulsion on their ventral side. Certain environmental conditions, however, can induce musculature-driven forms of locomotion: peristalsis or scrunching. While peristalsis results from a ciliary defect, scrunching is independent of cilia function and is a specific response to certain stimuli, including amputation, noxious temperature, extreme pH, and ethanol. Thus, these two musculature-driven gaits are mechanistically distinct. However, they can be difficult to distinguish qualitatively. Here, we provide a protocol for inducing scrunching using various physical and chemical stimuli. We detail the quantitative characterization of scrunching, which can be used to distinguish it from peristalsis and gliding, using freely available software. Since scrunching is a universal planarian gait, albeit with characteristic species-specific differences, this protocol can be broadly applied to all species of planarians, when using appropriate considerations. To demonstrate this, we compare the response of the two most popular planarian species used in behavioral research, Dugesia japonica and Schmidtea mediterranea, to the same set of physical and chemical stimuli. Furthermore, the specificity of scrunching allows this protocol to be used in conjunction with RNA interference and/or pharmacological exposure to dissect the molecular targets and neuronal circuits involved, potentially providing mechanistic insight into important aspects of nociception and neuromuscular communication.


Subject(s)
Planarians/physiology , Animals , Evaluation Studies as Topic , Stimuli Responsive Polymers
13.
Curr Rev Musculoskelet Med ; 13(4): 520-524, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32474897

ABSTRACT

PURPOSE OF REVIEW: Compressive neuropathy of the ulnar nerve across the elbow is a common diagnosis encountered frequently within a hand and upper extremity clinical practice. Appropriate and timely evaluation, diagnosis, objective testing, and evidence-based decisions regarding treatment options are paramount in the optimal care of the patient with this pathology. An understanding of current literature is critical in determining and understanding best practices. RECENT FINDINGS: A thorough review of the recent literature regarding physical examination, diagnostic testing, and nonoperative versus operative results was performed. Regarding physical examination, the glenohumeral internal rotation test and scratch collapse test are more effective and sensitive than traditional maneuvers such as Tinel's testing and the elbow flexion test. Electrodiagnostic testing, magnetic resonance imaging, and ultrasound evaluation have all been shown to be effective in diagnosing cubital tunnel syndrome. However, no single test has proven itself to be superior. Nonoperative treatment can be successful for mild cases of cubital tunnel syndrome. Surgical release techniques comparing open with endoscopic release are equivocal, and in situ release versus transposition techniques show that transposition should not be performed routinely. The diagnosis and treatment of cubital tunnel syndrome do not have a well-defined algorithm based on current literature. The treating physician must therefore utilize the available information to determine a diagnostic and treatment plan individualized to the patient. More rigorous scientific studies are needed to determine the most effective surgical approaches for cubital tunnel syndrome.

14.
Chemosphere ; 253: 126718, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32298908

ABSTRACT

High-throughput screening (HTS) using new approach methods is revolutionizing toxicology. Asexual freshwater planarians are a promising invertebrate model for neurotoxicity HTS because their diverse behaviors can be used as quantitative readouts of neuronal function. Currently, three planarian species are commonly used in toxicology research: Dugesia japonica, Schmidtea mediterranea, and Girardia tigrina. However, only D. japonica has been demonstrated to be suitable for HTS. Here, we assess the two other species for HTS suitability by direct comparison with D. japonica. Through quantitative assessments of morphology and multiple behaviors, we assayed the effects of 4 common solvents (DMSO, ethanol, methanol, ethyl acetate) and a negative control (sorbitol) on neurodevelopment. Each chemical was screened blind at 5 concentrations at two time points over a twelve-day period. We obtained two main results: First, G. tigrina and S. mediterranea planarians showed significantly reduced movement compared to D. japonica under HTS conditions, due to decreased health over time and lack of movement under red lighting, respectively. This made it difficult to obtain meaningful readouts from these species. Second, we observed species differences in sensitivity to the solvents, suggesting that care must be taken when extrapolating chemical effects across planarian species. Overall, our data show that D. japonica is best suited for behavioral HTS given the limitations of the other species. Standardizing which planarian species is used in neurotoxicity screening will facilitate data comparisons across research groups and accelerate the application of this promising invertebrate system for first-tier chemical HTS, helping streamline toxicology testing.


Subject(s)
Planarians/physiology , Toxicity Tests/methods , Animals , Neurons , Neurotoxicity Syndromes , Planarians/drug effects
15.
PLoS One ; 14(12): e0226104, 2019.
Article in English | MEDLINE | ID: mdl-31805147

ABSTRACT

In response to noxious stimuli, planarians cease their typical ciliary gliding and exhibit an oscillatory type of locomotion called scrunching. We have previously characterized the biomechanics of scrunching and shown that it is induced by specific stimuli, such as amputation, noxious heat, and extreme pH. Because these specific inducers are known to activate Transient Receptor Potential (TRP) channels in other systems, we hypothesized that TRP channels control scrunching. We found that chemicals known to activate TRPA1 (allyl isothiocyanate (AITC) and hydrogen peroxide) and TRPV (capsaicin and anandamide) in other systems induce scrunching in the planarian species Dugesia japonica and, except for anandamide, in Schmidtea mediterranea. To confirm that these responses were specific to either TRPA1 or TRPV, respectively, we tried to block scrunching using selective TRPA1 or TRPV antagonists and RNA interference (RNAi) mediated knockdown. Unexpectedly, co-treatment with a mammalian TRPA1 antagonist, HC-030031, enhanced AITC-induced scrunching by decreasing the latency time, suggesting an agonistic relationship in planarians. We further confirmed that TRPA1 in both planarian species is necessary for AITC-induced scrunching using RNAi. Conversely, while co-treatment of a mammalian TRPV antagonist, SB-366791, also enhanced capsaicin-induced reactions in D. japonica, combined knockdown of two previously identified D. japonica TRPV genes (DjTRPVa and DjTRPVb) did not inhibit capsaicin-induced scrunching. RNAi of DjTRPVa/DjTRPVb attenuated scrunching induced by the endocannabinoid and TRPV agonist, anandamide. Overall, our results show that although scrunching induction can involve different initial pathways for sensing stimuli, this behavior's signature dynamical features are independent of the inducer, implying that scrunching is a stereotypical planarian escape behavior in response to various noxious stimuli that converge on a single downstream pathway. Understanding which aspects of nociception are conserved or not across different organisms can provide insight into the underlying regulatory mechanisms to better understand pain sensation.


Subject(s)
Escape Reaction/drug effects , Transient Receptor Potential Channels/agonists , Transient Receptor Potential Channels/genetics , Animals , Hydrogen Peroxide/pharmacology , Isothiocyanates/pharmacology , Nociception/drug effects , Planarians
16.
Neurotoxicol Teratol ; 73: 54-66, 2019.
Article in English | MEDLINE | ID: mdl-30943442

ABSTRACT

Asexual freshwater planarians are an attractive invertebrate model for high-throughput neurotoxicity screening, because they possess multiple quantifiable behaviors to assess distinct neuronal functions. Planarians uniquely allow direct comparisons between developing and adult animals to distinguish developmentally selective effects from general neurotoxicity. In this study, we used our automated planarian screening platform to compare the neurotoxicity of 15 flame retardants (FRs), consisting of representative phased-out brominated (BFRs) and replacement organophosphorus FRs (OPFRs). OPFRs have emerged as a proposed safer alternative to BFRs; however, limited information is available on their health effects. We found 11 of the 15 FRs (3/6 BFRs, 7/8 OPFRs, and Firemaster 550) caused adverse effects in both adult and developing planarians with similar nominal lowest-effect-levels for BFRs and OPFRs. This suggests that replacement OPFRs are comparably neurotoxic to the phased-out compounds. BFRs were primarily systemically toxic, whereas OPFRs, except Tris(2-chloroethyl) phosphate, shared a behavioral phenotype in response to noxious heat at sublethal concentrations, indicating specific neurotoxic effects. We found this behavioral phenotype was correlated with cholinesterase inhibition, thus linking behavioral outcomes to molecular targets. By directly comparing effects on adult and developing planarians, we further found that one BFR (3,3',5,5'-Tetrabromobisphenol A) caused a developmental selective defect. Together, these results demonstrate that our planarian screening platform yields high content data from various behavioral and morphological endpoints, allowing us to distinguish selective neurotoxic effects and effects specific to the developing nervous system. Ten of these 11 bioactive FRs were previously found to be bioactive in other models, including cell culture and alternative animal models (nematodes and zebrafish). This level of concordance across different platforms emphasizes the urgent need for further evaluation of OPFRs in mammalian systems.


Subject(s)
Flame Retardants/toxicity , Neurotoxins/toxicity , Planarians/drug effects , Animals , Toxicity Tests, Acute
SELECTION OF CITATIONS
SEARCH DETAIL
...