Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Dosim ; 46(3): 283-288, 2021.
Article in English | MEDLINE | ID: mdl-33744079

ABSTRACT

Parotids are considered one of the major organs at risk in Head and Neck (HN) intensity-modulated radiotherapy (IMRT). Achieving proper target coverage with reduced mean parotid dose demands an elaborate time-consuming IMRT plan optimization. A parotid mean dose prediction model based on a machine-learning linear regression was developed and validated in this study. The model was developed using independent variables, such as parotid to PTV overlapping volume, dose coverage of the overlapping PTV, the ratio of overlapping parotid volume to total parotid volume, and volume of parotid overlapping with isotopically expanded PTV contours. The Pearson correlation coefficients between these independent variables and the mean parotid dose were calculated. Multicollinearity of the independent variables was checked by calculating the Variance Inflation Factor (VIF). All variables are having VIF less than ten were taken for the model. Fifty IMRT patient plans were used to develop the model. The mean parotid dose predicted by the model was in good agreement with the obtained mean parotid dose. The model is having a Root Mean Square Error (RMSE) of 2.89 Gy and an R-square of 0.7695. The model was successfully validated using the fivefold cross-validation method, resulting R-square value of 0.6179 and an RMSE of 2.93 Gy. The normality of the model's residuals was tested using Quartile-Quartile (Q-Q) plot and Shapiro Wilk test (p = 0.996, for null hypothesis ``residuals were normally distributed''). The data points in the Q-Q plot are falling approximately along the reference line. This model can be used in clinics to help the planner in the preplanning phase for efficient plan optimization.


Subject(s)
Head and Neck Neoplasms , Radiotherapy, Intensity-Modulated , Head and Neck Neoplasms/radiotherapy , Humans , Machine Learning , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
2.
Radiol Med ; 126(3): 453-459, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32803540

ABSTRACT

OBJECTIVES: Motivation of this study is to check the sensitivity of dosimetric tool gamma with 2D detector array combination when unexpected errors occur while transferring intensity-modulated radiation therapy treatment plans from planning system to treatment unit. METHODS: This study consists of 17 head and neck cancer patient's treatment plans. Nine types of verification plans are created for all 17 clinically approved treatment plans by consecutively deleting different segments (up to eight) one by one from each field of the plan. Decrement factor (χ) is introduced in our study which illustrated the degree of decay of gamma passing rate when intentional errors are introduced. We analyzed the data by two different methods-one without selecting the region of interest (ROI) in dose distributions and the other by selecting the region of interest. RESULTS: By linear regression, the absolute value of slopes is 0.025, 0.024 and 0.015 without ROI and 0.030, 0.027 and 0.015 with ROI for 2%/2 mm, 3%/3 mm and 5%/5 mm criteria, respectively. The higher absolute value of the fitted slope indicates the higher sensitivity of this method to identify erroneous plan in treatment unit. The threshold value for 2%/2 mm equivalent to 95% passing criteria in 3%/3 mm used in clinical practice is obtained as 83.44%. CONCLUSIONS: The 2D detector array with dosimetric tool gamma is less sensitive in detecting errors when unprecedented errors of segment deletion occur within the treatment plans.


Subject(s)
Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Setup Errors , Radiotherapy, Intensity-Modulated/methods , Algorithms , Humans , Linear Models , Particle Accelerators , Radiometry/methods , Radiotherapy, Intensity-Modulated/instrumentation , Sensitivity and Specificity
3.
Biomed Phys Eng Express ; 6(5): 055018, 2020 09 08.
Article in English | MEDLINE | ID: mdl-33444249

ABSTRACT

A complex neutron spectrum generated along with a useful photon beam imposes an additional radiation protection risk around medical linear accelerators (linac). The thermal neutron component of this complex neutron spectrum formed during different photon modes of operation of Elekta Versa HD linac has been quantified using Indium foil activation technique. The thermal neutron fluence (Φ th ) at isocenter for 15 MV, 10 MV and 10 MV FFF beams was found to be 2.45 × 105, 4.35 × 104 and 3.2 × 104 neutrons cm-2 Gy-1, respectively. The analysis shows a reduction in the Φ th as the flattening filter is being taken out from the beam path. A negative correlation in Φ th with respect to field size has been observed with an average 18% reduction in Φ th per monitor units as field size changes from 10 cm × 10 cm to 40 cm × 40 cm. For particular field size and photon energy, Φ th was found to be uniform across the patient plane. From the measured gamma ray spectrum inside the treatment room six major isotopes have been identified which were 122Sb, 187W, 82Br, 56Mn, 24Na and 28Al.


Subject(s)
Gamma Rays , Monte Carlo Method , Neutrons , Particle Accelerators/instrumentation , Photons , Radiometry/instrumentation , Humans , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...