Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 5(7): 787-92, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25050166

ABSTRACT

A cis-configured 3,5-disubstituted piperidine direct renin inhibitor, (syn,rac)-1, was discovered as a high-throughput screening hit from a target-family tailored library. Optimization of both the prime and the nonprime site residues flanking the central piperidine transition-state surrogate resulted in analogues with improved potency and pharmacokinetic (PK) properties, culminating in the identification of the 4-hydroxy-3,5-substituted piperidine 31. This compound showed high in vitro potency toward human renin with excellent off-target selectivity, 60% oral bioavailability in rat, and dose-dependent blood pressure lowering effects in the double-transgenic rat model.

2.
Bioorg Med Chem Lett ; 18(19): 5280-4, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18783943

ABSTRACT

We describe here orally active and brain-penetrant cathepsin S selective inhibitors, which are virtually devoid of hERG K(+) channel affinity, yet exhibit nanomolar potency against cathepsin S and over 100-fold selectivity to cathepsin L. The new non-peptidic inhibitors are based on a 2-cyanopyrimidine scaffold bearing a spiro[3.5]non-6-yl-methyl amine at the 4-position. The brain-penetrating cathepsin S inhibitors demonstrate potential clinical utility for the treatment of multiple sclerosis and neuropathic pain.


Subject(s)
Cathepsins/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Administration, Oral , Animals , Brain/drug effects , Cathepsin L , Combinatorial Chemistry Techniques , Cysteine Endopeptidases , Humans , Male , Molecular Structure , Multiple Sclerosis/drug therapy , Pain/drug therapy , Pyrimidines/blood , Pyrimidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
3.
J Med Chem ; 51(17): 5459-62, 2008 Sep 11.
Article in English | MEDLINE | ID: mdl-18707091

ABSTRACT

On the basis of the pyrrolopyrimidine core structure that was previously discovered, cathepsin K inhibitors having a spiro amine at the P3 have been explored to enhance the target, bone marrow, tissue distribution. Several spiro structures were identified with improved distribution toward bone marrow. The representative inhibitor 7 of this series revealed in vivo reduction in C-terminal telopeptide of type I collagen in rats and monkeys.


Subject(s)
Bone Resorption/drug therapy , Cathepsins/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacokinetics , Animals , Bone Marrow/metabolism , Cathepsin K , Collagen Type I/metabolism , Haplorhini , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Rats , Spiro Compounds , Tissue Distribution
5.
Bioorg Med Chem Lett ; 18(16): 4642-6, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18662880

ABSTRACT

We describe here a novel 4-amino-2-cyanopyrimidine scaffold for nonpeptidomimetic cathepsin S selective inhibitors. Some of the synthesized compounds have sub-nanomolar potency and high selectivity toward cathepsin S along with promising pharmacokinetic and physicochemical properties. The key structural features of the inhibitors consist of a combination of a spiro[2.5]oct-6-ylmethylamine P2 group at the 4-position, a small or polar P3 group at the 5-position and/or a polar group at the 6-position of the pyrimidine.


Subject(s)
Cathepsins/antagonists & inhibitors , Chemistry, Pharmaceutical/methods , Cysteine Proteinase Inhibitors/chemical synthesis , Nitriles/chemical synthesis , Peptides/chemistry , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Animals , Cysteine Proteinase Inhibitors/pharmacology , Drug Design , Humans , Inhibitory Concentration 50 , Male , Molecular Conformation , Nitriles/pharmacology , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 18(14): 3959-62, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18572405

ABSTRACT

Nonpeptidic, selective, and potent cathepsin S inhibitors were derived from an in-house pyrrolopyrimidine cathepsin K inhibitor by modification of the P2 and P3 moieties. The pyrrolopyrimidine-based inhibitors show nanomolar inhibition of cathepsin S with over 100-fold selectivity against other cysteine proteases, including cathepsin K and L. Some of the inhibitors showed cellular activities in mouse splenocytes as well as oral bioavailabilities in rats.


Subject(s)
Cathepsins/antagonists & inhibitors , Cysteine Endopeptidases/chemical synthesis , Cysteine Proteinase Inhibitors/chemical synthesis , Biological Availability , Cathepsin K , Cathepsin L , Cathepsins/chemistry , Chemistry, Pharmaceutical , Cysteine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Molecular Structure , Pyridines/chemistry , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 18(8): 2599-603, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18375120

ABSTRACT

Cyano pyrimidine acetylene and cyano pyrimidine t-amine, which belong to a new chemical class, were prepared and tested for inhibitory activities against cathepsin K and the highly homologous cathepsins L and S. The use of novel chemotypes in the development of cathepsin K inhibitors has been demonstrated by derivatives of compounds 1 and 8.


Subject(s)
Cathepsins/antagonists & inhibitors , Cathepsins/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Binding Sites , Cathepsin K , Cathepsin L , Cathepsins/chemistry , Cysteine Endopeptidases/metabolism , Drug Design , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship
9.
J Med Chem ; 50(4): 591-4, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17256925

ABSTRACT

Starting from the purine lead structure 1, a new series of cathepsin K inhibitors based on a pyrimidine scaffold have been explored. Investigations of P3 and P2 substituents based on molecular modeling suggestions resulted in potent cathepsin K inhibitors with an improved selectivity profile over other cathepsins.


Subject(s)
Cathepsins/antagonists & inhibitors , Cathepsins/chemistry , Cysteine Endopeptidases/chemistry , Models, Molecular , Nitriles/chemical synthesis , Protease Inhibitors/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Binding Sites , Cathepsin K , Crystallography, X-Ray , Nitriles/chemistry , Nitriles/pharmacokinetics , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...