Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 7: 13152, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27759006

ABSTRACT

Understanding the relationship between the location of nanoparticles (NPs) in an organic matrix and their catalytic performances is essential for catalyst design. Here we show that catalytic activities of Au, Ag and CuNPs stabilized by dendrimers using coordination to intradendritic triazoles, galvanic replacement or stabilization outside dendrimers strongly depends on their location. AgNPs are found at the inner click dendrimer periphery, whereas CuNPs and AuNPs are encapsulated in click dendrimer nanosnakes. AuNPs and AgNPs formed by galvanic replacement are larger than precursors and only partly encapsulated. AuNPs are all the better 4-nitrophenol reduction catalysts as they are less sterically inhibited by the dendrimer interior, whereas on the contrary CuNPs are all the better alkyne azide cycloaddition catalysts as they are better protected from aerobic oxidation inside dendrimers. This work highlights the role of the location in macromolecules on the catalytic efficiency of metal nanoparticles and rationalizes optimization in catalyst engineering.

2.
Inorg Chem ; 55(13): 6361-3, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27333944

ABSTRACT

Ferrocene (Fc) in ether reduces HAuCl4 in water within seconds under ambient conditions in air upon stirring, forming ferricinium chloride stabilized water-soluble 20 nm gold nanoparticles (AuNPs) that are redispersible in the presence of poly(N-vinylmethylpyrrolidone) or NaBH4 + thiol. After reduction with NaBH4 yielding Fc and 26 nm sodium poly(hydroxyborate) stabilized AuNPs, the core size no longer changes following reactions with thiols providing (RS)nAuNPs.

3.
Colloids Surf B Biointerfaces ; 145: 328-337, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27209385

ABSTRACT

Polyelectrolyte multilayers (PEMs) of poly-l-lysine (PLL) and alginic acid sodium salt (Alg) are fabricated applying the layer by layer technique and annealed at a constant temperature; 37, 50 and 80°C, for 72h. Atomic force microscopy reveals changes in the topography of the PEM, which is changing from a fibrillar to a smooth surface. Advancing contact angle in water varies from 36° before annealing to 93°, 77° and 95° after annealing at 37, 50 and 80°C, respectively. Surface energy changes after annealing were calculated from contact angle measurements performed with organic solvents. Quartz crystal microbalance with dissipation, contact angle and fluorescence spectroscopy measurements show a significant decrease in the adsorption of the bovine serum albumin protein to the PEMs after annealing. Changes in the physical properties of the PEMs are interpreted as a result of the reorganization of the polyelectrolytes in the PEMs from a layered structure into complexes where the interaction of polycations and polyanions is enhanced. This work proposes a simple method to endow bio-PEMs with antifouling characteristics and tune their wettability.


Subject(s)
Alginates/pharmacology , Biofouling , Polyelectrolytes/pharmacology , Polylysine/pharmacology , Temperature , Adsorption , Animals , Cattle , Glucuronic Acid/pharmacology , Hexuronic Acids/pharmacology , Microscopy, Atomic Force , Quartz Crystal Microbalance Techniques , Serum Albumin, Bovine , Spectrometry, Fluorescence , Surface Properties , Water/chemistry , Wettability
4.
Angew Chem Int Ed Engl ; 55(9): 3091-5, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26822288

ABSTRACT

A ligand design is proposed for transition metal nanoparticle (TMNP) catalysts in aqueous solution. Thus, a tris(triazolyl)-polyethylene glycol (tris-trz-PEG) amphiphilic ligand, 2, is used for the synthesis of very small TMNPs with Fe, Co, Ni, Cu, Ru, Pd, Ag, Pt, and Au. These TMNP-2 catalysts were evaluated and compared for the model 4-nitrophenol reduction, and proved to be extremely efficient. High catalytic efficiencies involving the use of only a few ppm metal of PdNPs, RuNPs, and CuNPs were also exemplified in Suzuki-Miyaura, transfer hydrogenation, and click reactions, respectively.

5.
Chemistry ; 21(50): 18177-86, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26494439

ABSTRACT

We report the first pentamethylferrocene (PMF) polymers and the redox chemistry of their robust polycationic pentamethylferricenium (PMFium) analogues. The PMF polymers were synthesized by ring-opening metathesis polymerization (ROMP) of a PMF-containing norbornene derivative by using the third-generation Grubbs ruthenium metathesis catalyst. Cyclic voltammetry studies allowed us to determine confidently the number of monomer units in the polymers through the Bard-Anson method. Stoichiometric oxidation by using ferricenium hexafluorophosphate quantitatively and instantaneously provided fully stable (even in aerobic solutions) blue d(5) Fe(III) metallopolymers. Alternatively, oxidation of the PMF-containing polymers was conducted by reactions with Ag(I) or Au(III) , to give PMFium polymer-embedded Ag and Au nanoparticles (NPs). In the presence of I2 , oxidation by using Ag(I) gave polymer-embedded Ag/AgI NPs and AgNPs at the surface of AgI NPs. Oxidation by using Au(III) also produced an Au(I) intermediate that was trapped and characterized. Engineered single-electron transfer reactions of these redox-robust nanomaterial precursors appear to be a new way to control their formation, size, and environment in a supramolecular way.

6.
Nanoscale ; 7(15): 6588-98, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25789459

ABSTRACT

Cerium Oxide nanoparticles (CeO(2-x) NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO(2-x) NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO(2-x) NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO(2-x) NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO(2-x) NPs. The brush coating does not prevent CeO(2-x) NPs from displaying antioxidant properties.


Subject(s)
Cerium/chemistry , Metal Nanoparticles/chemistry , Polymers/chemistry , Reactive Oxygen Species/chemistry , Apoptosis , Cell Lineage , Cell Separation , Colloids/chemistry , Flow Cytometry , Fluorescein-5-isothiocyanate/chemistry , HEK293 Cells , Humans , Mass Spectrometry , Methacrylates/chemistry , Microscopy, Confocal , Microscopy, Electron, Transmission , Spectrum Analysis, Raman
7.
Inorg Chem ; 54(5): 2284-99, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25676664

ABSTRACT

The design of redox-robust polymers is called for in view of interactions with nanoparticles and surfaces toward applications in nanonetwork design, sensing, and catalysis. Redox-robust triazolylbiferrocenyl (trzBiFc) polymers have been synthesized with the organometallic group in the side chain by ring-opening metathesis polymerization using Grubbs-III catalyst or radical polymerization and with the organometallic group in the main chain by Cu(I) azide alkyne cycloaddition (CuAAC) catalyzed by [Cu(I)(hexabenzyltren)]Br. Oxidation of the trzBiFc polymers with ferricenium hexafluorophosphate yields the stable 35-electron class-II mixed-valent biferrocenium polymer. Oxidation of these polymers with Au(III) or Ag(I) gives nanosnake-shaped networks (observed by transmission electron microscopy and atomic force microscopy) of this mixed-valent Fe(II)Fe(III) polymer with encapsulated metal nanoparticles (NPs) when the organoiron group is located on the side chain. The factors that are suggested to be synergistically responsible for the NP stabilization and network formation are the polymer bulk, the trz coordination, the nearby cationic charge of trzBiFc, and the inter-BiFc distance. For instance, reduction of such an oxidized trzBiFc-AuNP polymer to the neutral trzBiFc-AuNP polymer with NaBH4 destroys the network, and the product flocculates. The polymers easily provide modified electrodes that sense, via the oxidized Fe(II)Fe(III) and Fe(III)Fe(III) polymer states, respectively, ATP(2-) via the outer ferrocenyl units of the polymer and Pd(II) via the inner Fc units; this recognition works well in dichloromethane, but also to a lesser extent in water with NaCl as the electrolyte.


Subject(s)
Ferrous Compounds/chemistry , Metal Nanoparticles/chemistry , Organometallic Compounds/chemistry , Polymers/chemistry , Triazoles/chemistry , Anions/chemistry , Click Chemistry , Gold/chemistry , Metallocenes , Molecular Structure , Organometallic Compounds/chemical synthesis , Oxidation-Reduction , Particle Size , Silver/chemistry , Surface Properties
8.
Beilstein J Nanotechnol ; 6: 2310-8, 2015.
Article in English | MEDLINE | ID: mdl-26734521

ABSTRACT

A novel and facile method was developed to produce hybrid graphene oxide (GO)-polyelectrolyte (PE) capsules using erythrocyte cells as templates. The capsules are easily produced through the layer-by-layer technique using alternating polyelectrolyte layers and GO sheets. The amount of GO and therefore its coverage in the resulting capsules can be tuned by adjusting the concentration of the GO dispersion during the assembly. The capsules retain the approximate shape and size of the erythrocyte template after the latter is totally removed by oxidation with NaOCl in water. The PE/GO capsules maintain their integrity and can be placed or located on other surfaces such as in a device. When the capsules are dried in air, they collapse to form a film that is approximately twice the thickness of the capsule membrane. AFM images in the present study suggest a film thickness of approx. 30 nm for the capsules in the collapsed state implying a thickness of approx. 15 nm for the layers in the collapsed capsule membrane. The polyelectrolytes used in the present study were polyallylamine hydrochloride (PAH) and polystyrenesulfonate sodium salt (PSS). Capsules where characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and Raman microscopy, the constituent layers by zeta potential and GO by TEM, XRD, and Raman and FTIR spectroscopies.

9.
J Colloid Interface Sci ; 421: 132-40, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24594041

ABSTRACT

Hybrid polyelectrolyte multilayer systems were fabricated on top of planar surfaces and colloidal particles via layer by layer (LbL) assembly of polystyrene sulphonate (PSS) and polybenzyl methacrylate-block-poly(dimethylamino)ethyl methacrylate (PBzMA-b-PDMAEMA) polymersomes. Polymersomes were prepared by self assembly of PBzMA-b-PDMAEMA copolymer, synthesised by group transfer polymerisation. Polymersomes display a diameter of 270 nm and a shell thickness of 11nm. Assembly on planar surfaces was followed by means of the Quartz Crystal Microbalance with Dissipation (QCM-D) and Atomic Force Microscopy (AFM). Detailed information on the assembly mechanism and surface topology of the polymersome/polyelectrolyte films was thereby obtained. The assembly of polymersomes and PSS on top of silica particles of 500 nm in diameter was confirmed by ζ-potential measurements. Confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that polymersome/PSS coated silica particles increase in total diameter up to 3-5µm. This hints toward the formation of densely packed polymersome layers. In addition, CLSM showed that polymersome/PSS films exhibit a high loading capacity that could potentially be used for encapsulation and delivery of diverse chemical species. These results provide an insight into the formation of multilayered films with compartmentalised hydrophilic/hydrophobic domains and may lead to the successful application of polymersomes in surface-engineered colloidal systems.


Subject(s)
Colloids/chemistry , Electrolytes/chemistry , Polymers/chemistry , Microscopy/methods , Particle Size
10.
Macromol Rapid Commun ; 33(22): 1964-9, 2012 Nov 23.
Article in English | MEDLINE | ID: mdl-22933191

ABSTRACT

Responsive polyelectrolyte multilayers (PEMs) of poly(diallyl dimethyl ammonium chloride) (PDADMAC) and poly(styrene sodium sulfonate) (PSS) with thicknesses between 350 and 400 nm for 11 deposited polyelectrolyte layers were fabricated assembling the polyelectrolytes at 3 M NaCl. When the 3 M NaCl bulk solution is replaced by water, the PEMs release water, approximately a 46% of the total mass, and experience a thickness reduction of more than 200 nm. Changes in thickness and water content are fully reversible. The film recovers its original thickness and water content when it is exposed again to a 3 M NaCl solution. A responsive polymer film is achieved with the capability of swelling at high ionic strength and collapsing in water with variations in thickness of hundred of nanometers.


Subject(s)
Electrolytes/chemistry , Polyethylenes/chemistry , Polystyrenes/chemistry , Quaternary Ammonium Compounds/chemistry , Microscopy, Atomic Force , Osmolar Concentration , Sodium Chloride/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...