Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 12(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35892555

ABSTRACT

A 9-week growth trial was carried out to assess the influence of replacing poultry by-product meal protein with conventional cottonseed meal protein (CCMP) or low gossypol cottonseed meal protein (LGCMP) on growth, feed utilization, gut micromorphology, and immunity of hybrid grouper (Epinephelus fuscoguttatusâ™€× Epinephelus lanceolatus♂) juveniles fed low-fish meal (18.53%, dry matter) diets. Eleven experimental diets were prepared. The control diet (PBMP) contained 46.15% poultry by-product meal protein. Both conventional cottonseed meal protein (CCMP) and low-gossypol cottonseed meal protein (LGCMP) were used in replacement ratios of 20, 40, 60, 80, and 100% of poultry by-product meal protein (PBMP) from the control diet, forming ten experimental diets (CCMP20, CCMP40, CCMP60, CCMP80, CCMP100, LGCMP20, LGCMP40, LGCMP60, LGCMP80, and LGCMP100). Results demonstrated that weight-gain percentage (WG%) was not different between different sources of cottonseed meal (CCMP and LGCMP). However, values of WG% significantly differed among different replacement levels, with CCMP80 and LGCMP40 having significantly higher values compared to other treatments. Fish fed CCMP80 and LGCMP40 exhibited higher protein efficiency ratios (PERs) than fish fed other experimental diets. The regression analysis from a second-order or third-order polynomial model based on WG% showed that the optimal PBMP replacement levels by CCMP and LGCMP are 74% and 33%, respectively. The whole-body lipid contents remarkably decreased as dietary CCMP or LGCMP inclusion levels increased. The relative mRNA expression of insulin-like growth factor-1(IGF-1) in liver was higher in fish fed CCMP80 and LGCMP40 diets compared to fish fed other diets. Generally, in low-FM diets of hybrid grouper, CCMP and LGCMP could replace 74% and 33% of PBMP, respectively.

2.
Amino Acids ; 53(7): 1065-1077, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34085155

ABSTRACT

An 8-week feeding trial was conducted to evaluate optimum dietary methionine (Met) requirement of juvenile humpback grouper (Cromileptes altivelis) and the influence of dietary methionine (Met) supplementations on growth, gut micromorphology, protein and lipid metabolism. Seven isoproteic (48.91%) and isolipidic diets (10%) were made to contain 0.70, 0.88, 1.04, 1.27 1.46, 1.61 and 1.76% of dry matter Met levels. Results showed that lower survival, weight gain (WG%), protein efficiency ratio (PER), protein productive value (PPV) but higher daily feed intake (DFI) and feed conversion ratio (FCR) were observed in the Met deficient groups (0.70 and 0.88%). Optimum dietary Met requirement for humpback grouper was found to be 1.07% through the straight-broken line analysis of WG% against Met. Fish fed Met deficient diets (0.70, 0.88%) exhibited lower mRNA levels of growth hormone (GH), growth hormone receptor (GHR), insulin-like growth factor-I (IGF-1), target of rapamycin (TOR) as well as S6 kinase 1 (S6K1) than other dietary groups. Whereas, expression of genes related to general control nonderepressible (GCN2) kinase i.e., GCN2 and C/EBPß enhancer-binding protein ß was upregulated in fish fed low Met diets (P < 0.05). The mRNA expression of hepatic fatty acid synthase (FAS) and sterol regulatory element-binding protein-1 (SREBP-1) were higher in fish fed 0.70 and 0.88% dietary Met group and the lipolytic genes, hepatic peroxisome proliferator-activated receptor α (PPARα) and carnitine palmitoyl transferase-1 (CPT-1) showed an opposite variation tendency as FAS or SREBP1. Generally, the optimum Met requirement for humpback grouper was predicted to be 1.07% of dry matter.


Subject(s)
Animal Feed/analysis , Bass/anatomy & histology , Bass/growth & development , Fish Proteins/metabolism , Lipid Metabolism , Methionine/metabolism , Nutritional Requirements , Animals , Bass/metabolism , Diet , Fish Proteins/genetics , Liver/metabolism
3.
Microsc Res Tech ; 84(12): 2890-2905, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34077585

ABSTRACT

Pedicularis groenlandica is one of the most important medicinal plant of Deosai Plateau (Gilgit-Baltistan) Pakistan. The present study was aim to evaluate the micromorphological features, phytochemical screening and pharmacological potential of P. groenlandica by using multiple microscopic techniques. Six different solvents were used to prepare P. groenlandica extracts. Phytochemical and antioxidant activities were determined calorimetrically. To investigate antidiabetic, α-amylase inhibition assay was performed. Cytotoxicity was tested using brine shrimp assay. Anti-leishmanial via MTT assay. Disc-diffusion assay was used for protein kinase inhibitory, antibacterial and antifungal activities. Palyno-anatomical study showed significant variation for the authentication and correct identification of this highly therapeutic plant by using light and scanning electron microscopic techniques. All extracts were found rich in phytochemicals, significant amount of phenolic and flavonoid contents were found in methanol extract (PGM) 95.78 mg GAE/g and 66.90 mg QE/g. Highest DPPH scavenging potential with IC50 88.65 µg/mL, total antioxidant capacity (60.33 mg AAE/g sample) and total reducing power (83.97 mg AAE/g) were found for PGM. Disc-diffusion method showed significant antibacterial and antifungal activities. Noticeable growth inhibition in L. tropica was displayed by n-hexane extract (IC50 112 µg/mL). Brine shrimp with highest LD50 (67.65 µg/mL) in ethyl-acetate extract. Ethanol extract gives persuasive protein kinase inhibition (26 mm) against Streptomyces 85-E hyphae. Highest alpha-amylase inhibition (74.10%) was found in n-hexane extract. In conclusion, our findings scientifically support the ethno-medicinal and biological potential of P. groenlandica. In future, the plant needs to be explored for further identification and isolation of bioactive compounds to develop new drugs to treat several aliments.


Subject(s)
Anti-Infective Agents , Pedicularis , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology
4.
Front Physiol ; 11: 507, 2020.
Article in English | MEDLINE | ID: mdl-32581826

ABSTRACT

An 8-week feeding trial was conducted to evaluate the effects of dietary carbohydrate to lipid (CHO:L) ratios on growth performance, muscle fatty acid composition, and intermediary metabolism in juvenile black seabream (Acanthopagrus schlegelii). Five isonitrogenous and isoenergetic diets (48.0% crude protein and 18.0 MJ kg-1 gross energy) were formulated to contain different CHO:L ratios ranging from 0.33 to 3.75. Triplicate groups of 20 fish averaging 0.51 ± 0.01 g were fed with experimental diets twice daily to apparent satiation. The results indicated that final body weight (FBW), percentage weight gain (PWG), specific growth rate (SGR), and protein efficiency ratio (PER) were significantly influenced by the dietary CHO:L ratios (p < 0.05). The highest FBW, PWG, and SGR were observed in fish fed the diet with a CHO:L ratio of 1.36 (p < 0.05). A two-slope broken-line regression analysis based on PWG indicated that the optimal dietary CHO:L is 1.08. Lipid content in the whole body decreased, and glycogen concentration in the liver increased with the increase of dietary CHO:L ratios from 0.33 to 3.75 (p < 0.05). Moreover, there was a positive correlation between muscle fatty acid composition and dietary fatty acid composition. The relative expression levels of genes involved in glucose metabolism, such as gk, pepck, and glut2 were upregulated by increasing the dietary CHO:L ratio. Also, the mRNA expression level of genes related to lipid synthesis, such as fas and accα were significantly upregulated with dietary CHO:L ratios increasing from 0.33 to 3.75. The highest expression of genes involved in fatty acid ß-oxidation, such as cpt1 and acox1, were observed in fish fed the 1.36 CHO:L ratio diet. The gene expression of Δ6 fatty acyl desaturase (fads2) in the liver significantly increased with increase of dietary CHO:L ratios from 0.33 to 3.75. Fish fed the diet with CHO:L ratios of 2.26 and 3.75 had lower expression levels of elovl5 than those fed the other diets. These results demonstrate that dietary optimal CHO:L ratios could improve PWG and SGR but also influence expression of genes involved in glucose and lipid metabolism. Based on the overall results, the optimal dietary CHO:L ratio is 1.08 for black seabream.

5.
Fish Shellfish Immunol ; 101: 269-276, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32244030

ABSTRACT

An 8-week feeding trial was conducted to evaluate the effect of replacement of fish meal (FM) with fish soluble meal (FSM) on growth performance, feed utilization and expression of genes involved in TOR signaling pathway for juvenile black sea bream (Acanthopagrus schlegelii). Six isonitrogenous (41%) and isolipidic diets were prepared to contain graded levels of FSM which replaced 0% (control diet), 10%, 20%, 30%, 40% and 60% protein from FM. Triplicate groups of 20 fish with initial weight 0.51 ± 0.01 g were fed with experimental diets twice daily to apparent satiation. The results showed significant differences in growth performance and feed utilization among all treatments, final body weight (FBW), percent weight gain (PWG), specific growth rate (SGR) and protein efficiency ratio (PER) significantly increased with dietary replacement levels of FM with FSM increasing from 0% to 40% (P < 0.05), PWG, SGR and PER were significantly reduced when replacement of FM with FSM further increased from 40% to 60%. Based on PWG against replacement levels of FM with FSM, A two-slope broken-line model analysis indicated that the optimal replacement of FM with FSM is to be 42.59%. Moreover, the lowest feed conversion ratio (FCR) was observed in fish fed the 40% FSM replacement diet. Muscle amino acid profile in muscle revealed that total essential amino acids, arginine and threonine were significantly influenced by replacement levels of FSM, while there was no significant difference in NEAA among all treatments. The hematological indices were not affected by the replacement levels of FM with FSM. The relative expression levels of irs-1, pi3k, akt, igf-1, s6k1 and tor were up-regulated when replacement levels of FM with FSM increased from 0% to 40%, and higher values were observed in fish fed with 40% FSM replacement diet compared to those fed the other diets. However, relative expression of 4e-bp2 was down-regulated when replacement levels of FM with FSM increased from 0% to 40% (P < 0.05). In summary, the results of present study indicated that FSM could be a viable alternative protein source for black sea bream, dietary FSM supplementation could improve growth and up-regulate the relative expression of irs-1, pi3k, akt, igf-1, s6k1 genes related to TOR signaling pathway in liver of juvenile black sea bream.


Subject(s)
Dietary Proteins/metabolism , Fish Proteins/physiology , Sea Bream/physiology , Signal Transduction/physiology , TOR Serine-Threonine Kinases/physiology , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Proteins/administration & dosage , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Random Allocation , Sea Bream/growth & development , Sea Bream/immunology
6.
Fish Shellfish Immunol ; 101: 168-175, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32209396

ABSTRACT

The present study was aimed to compare and evaluate the impacts of supplemented diets with different yeast hydrolysate (YH) levels on growth performance, body composition, hematological characteristics, antioxidant enzyme activities, and non-specific immunity (intestinal cytokines) of juvenile Nile tilapia (Oreochromis niloticus). Three isonitrogenous (protein, 33%) and isolipidic (lipid, 6%) experimental diets supplemented graded levels of YH (0% for control; 1% and 3% as tested diets) were fed to juvenile Nile tilapia. A total of 240 fish with initial body weight averaging 3.5 ± 0.02 g were randomly divided into three groups with four replicates per group and 20 fish for each replicate. For apparent satiation, the fish were fed twice daily during eight weeks. The results showed no significant difference in survival among all treatments. The fish fed the diet containing 1% yeast hydrolysate had significantly elevated weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER) compared to the control group and lower feed conversion ratio (FCR). The fish fed 1% and 3% YH showed higher glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) activity and a significantly lower malondialdehyde (MDA) level in the liver than the control group, indicating enhancement of the anti-oxidant status. Serum lysozyme activity was significantly increased in the diet having 1% and 3% yeast hydrolysate supplementation groups, suggesting an improvement influence on the non-specific immune response. The expression of IL-1ß, IL-10, TNF-α, TGF-ß2, ALP and TLR2 was significantly elevated in fish fed the diet containing 1% YH. In conclusion, dietary supplementation with 1% yeast hydrolysate improves growth performance, and feed utilization enhances the antioxidant status and exerts an adequate stimulus on the non-specific immunity (intestinal cytokines) of Nile tilapia.


Subject(s)
Antioxidants/metabolism , Cichlids/immunology , Immunity, Innate , Yeast, Dried/metabolism , Animal Feed/analysis , Animals , Cichlids/blood , Cichlids/growth & development , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Hematologic Tests/veterinary , Random Allocation , Yeast, Dried/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...