Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Biochem Behav ; 103(4): 792-813, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23274813

ABSTRACT

Altered dopaminergic signaling causes behavioral changes in mammals. In general, dopaminergic receptor agonists increase locomotor activity, while antagonists decrease locomotor activity. In order to determine if zebrafish (a model organism becoming popular in pharmacology and toxicology) respond similarly, the acute effects of drugs known to target dopaminergic receptors in mammals were assessed in zebrafish larvae. Larvae were maintained in 96-well microtiter plates (1 larva/well). Non-lethal concentrations (0.2-50 µM) of dopaminergic agonists (apomorphine, SKF-38393, and quinpirole) and antagonists (butaclamol, SCH-23390, and haloperidol) were administered at 6 days post-fertilization (dpf). An initial experiment identified the time of peak effect of each drug (20-260 min post-dosing, depending on the drug). Locomotor activity was then assessed for 70 min in alternating light and dark at the time of peak effect for each drug to delineate dose-dependent effects. All drugs altered larval locomotion in a dose-dependent manner. Both the D1- and D2-like selective agonists (SKF-38393 and quinpirole, respectively) increased activity, while the selective antagonists (SCH-23390 and haloperidol, respectively) decreased activity. Both selective antagonists also blunted the response of the larvae to changes in lighting conditions at higher doses. The nonselective drugs had biphasic effects on locomotor activity: apomorphine increased activity at the low dose and at high doses, while butaclamol increased activity at low to intermediate doses, and decreased activity at high doses. This study demonstrates that (1) larval zebrafish locomotion can be altered by dopamine receptor agonists and antagonists, (2) receptor agonists and antagonists generally have opposite effects, and (3) drugs that target dopaminergic receptors in mammals appear, in general, to elicit similar locomotor responses in zebrafish larvae.


Subject(s)
Dopamine Agents/administration & dosage , Motor Activity/drug effects , Zebrafish/physiology , Animals , Dopamine Agonists/administration & dosage , Dopamine Antagonists/administration & dosage , Dose-Response Relationship, Drug , Larva/drug effects , Larva/physiology , Models, Animal , Motor Activity/physiology , Receptors, Dopamine/physiology
2.
Neurotoxicol Teratol ; 32(1): 84-90, 2010.
Article in English | MEDLINE | ID: mdl-19465114

ABSTRACT

As part of the development of a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae by assessing the acute effects of prototypic drugs that act on the central nervous system. Initially, we chose ethanol, d-amphetamine, and cocaine, which are known, in mammals, to increase locomotion at low doses and decrease locomotion at higher doses. Wild-type larvae were individually maintained in 96-well microtiter plates at 26 degrees C, under a 14:10 h light:dark cycle, with lights on at 0830 h. At 6 days post-fertilization, ethanol (1-4% v/v), d-amphetamine sulfate (0.1-20.0 microM) or cocaine hydrochloride (0.2-50.0 microM) were administered to the larvae by immersion. Beginning 20 min into the exposure, locomotion was assessed for each animal for 70 min using 10-minute, alternating light (visible light) and dark (infrared light) periods. Low concentrations of ethanol and d-amphetamine increased activity, while higher concentrations of all three drugs decreased activity. Because ethanol effects occurred predominately during the light periods, whereas the d-amphetamine and cocaine effects occurred during the dark periods, alternating lighting conditions proved to be advantageous. These results indicate that zebrafish larvae are sensitive to neuroactive drugs, and their locomotor response is similar to that of mammals.


Subject(s)
Larva/drug effects , Motor Activity/drug effects , Nervous System/drug effects , Toxicity Tests/methods , Zebrafish/physiology , Animals , Cocaine/toxicity , Dextroamphetamine/toxicity , Dose-Response Relationship, Drug , Ethanol/toxicity , Photoperiod
3.
Neurotoxicology ; 30(1): 52-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18952124

ABSTRACT

The increasing use of zebrafish (Danio rerio) in developmental research highlights the need for a detailed understanding of their behavior. We studied the locomotion of individual zebrafish larva (6 days post-fertilization) in 96-well microtiter plates. Movement was recorded using a video-tracking system. Time of day results indicated locomotion, tested in darkness (infrared), decreased gradually from early morning to a stable level between 13:00 and 15:30 h. All further studies were conducted in early-to-late afternoon and lasted approximately 1 h. Each study also began with a period of darkness to minimize any unintended stimulation caused by transferring the plates to the recording platform. Locomotion in darkness increased initially to a maximum at 4 min, then decreased steadily to a low level by 20 min. Locomotion during light was initially low and then gradually increased to a stable level after 20 min. When 10-min periods of light and dark were alternated, activity was low in light and high in dark; curiously, activity during alternating dark periods was markedly higher than originally obtained during either extended dark or light. Further experiments explored the variables influencing this alternating pattern of activity. Varying the duration of the initial dark period (10-20 min) did not affect subsequent activity in either light or dark. The activity increase on return to dark was, however, greater following 15 min than 5 min of light. Acute ethanol increased activity at 1 and 2% and severely decreased activity at 4%. One-percent ethanol retarded the transition in activity from dark to light, and the habituation of activity in dark, while 2% ethanol increased activity regardless of lighting condition. Collectively, these results show that locomotion in larval zebrafish can be reliably measured in a 96-well microtiter plate format, and is sensitive to time of day, lighting conditions, and ethanol.


Subject(s)
Ethanol/pharmacology , Locomotion/physiology , Zebrafish/physiology , Animals , Female , Larva/physiology , Locomotion/drug effects , Male , Photoperiod
SELECTION OF CITATIONS
SEARCH DETAIL
...