Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 102(19): 8537-8549, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29992435

ABSTRACT

This study aimed to identify and characterise biosurfactant compounds produced by bacteria associated with a marine eukaryotic phytoplankton bloom. One strain, designated MCTG214(3b1), was isolated by enrichment with polycyclic aromatic hydrocarbons and based on 16S rDNA, and gyrB sequencing was found to belong to the genus Pseudomonas, however not related to P. aeruginosa. Cell-free supernatant samples of strain MCTG214(3b1) at stationary phase showed significant reductions in surface tension. HPLC-MS and NMR analysis of these samples indicated the presence of five different rhamnolipid (RL) congeners. Di-rhamnolipids accounted for 87% relative abundance and all congeners possessed fatty acid moieties consisting of 8-12 carbons. PCR screening of strain MCTG214(3b1) DNA revealed homologues to the P. aeruginosa RL synthesis genes rhlA and rhlB; however, no rhlC homologue was identified. Using the Galleria mellonella larvae model, strain MCTG214(3b1) was demonstrated to be far less pathogenic than P. aeruginosa. This study identifies for the first time a significantly high level of synthesis of short chain di-rhamnolipids by a non-pathogenic marine Pseudomonas species. We postulate that RL synthesis in Pseudomonas sp. MCTG214(3b1) is carried out by enzymes expressed from rhlA/B homologues similar to those of P. aeruginosa; however, a lack of rhlC potentially indicates the presence of a second novel rhamnosyltransferase responsible for the di-rhamnolipid congeners identified by HPLC-MS.


Subject(s)
Bacterial Proteins/metabolism , Glycolipids/biosynthesis , Glycolipids/chemistry , Pseudomonas/metabolism , Seawater/microbiology , Surface-Active Agents/metabolism , Animals , Bacterial Proteins/genetics , DNA Gyrase/genetics , Glycolipids/genetics , Pseudomonas/chemistry , Pseudomonas/classification , Pseudomonas/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Int J Food Microbiol ; 196: 24-31, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25506798

ABSTRACT

A major hurdle in producing a useful probiotic food product is bacterial survival during storage and ingestion. The aim of this study was to test the effect of γ-PGA immobilisation on the survival of probiotic bacteria when stored in acidic fruit juice. Fruit juices provide an alternative means of probiotic delivery, especially to lactose intolerant individuals. In addition, the survival of γ-PGA-immobilised cells in simulated gastric juice was also assessed. Bifidobacteria strains (Bifidobacteria longum, Bifidobacteria breve), immobilised on 2.5% γ-PGA, survived significantly better (P<0.05) in orange and pomegranate juice for 39 and 11 days respectively, compared to free cells. However, cells survived significantly better (P<0.05) when stored in orange juice compared to pomegranate juice. Moreover, both strains, when protected with 2.5% γ-PGA, survived in simulated gastric juice (pH2.0) with a marginal reduction (<0.47 log CFU/ml) or no significant reduction in viable cells after 4h, whereas free cells died within 2h. In conclusion, this research indicates that γ-PGA can be used to protect Bifidobacteria cells in fruit juice, and could also help improve the survival of cells as they pass through the harsh conditions of the gastrointestinal tract (GIT). Following our previous report on the use of γ-PGA as a cryoprotectant for probiotic bacteria, this research further suggests that γ-PGA could be used to improve probiotic survival during the various stages of preparation, storage and ingestion of probiotic cells.


Subject(s)
Beverages/microbiology , Bifidobacterium/drug effects , Food Storage , Glutamic Acid/pharmacology , Microbial Viability/drug effects , Probiotics , Bifidobacterium/physiology , Citrus sinensis/microbiology , Lythraceae/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...