Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 507-520, 2024 01.
Article in English | MEDLINE | ID: mdl-37477660

ABSTRACT

Epirubicin (EPI) is an effective chemotherapeutic against breast cancer, though EPI-related cardiotoxicity limits its usage. Endogenously derived 3-indolepropionic acid (3-IPA) from tryptophan metabolism is of interest due to its antioxidant capabilities which may have cardioprotective effects. Supplementation with 3-IPA may abate EPI's cardiotoxicity, and herein we studied the possibility of lessening EPI-induced cardiotoxicity in Wistar rats. Experimental rats (n = 30; BW 180-200 g) were randomly distributed in five cohorts (A-E; n = 6 each). Group A (control), Group B (EPI 2.5 mg/mL), and group C (3-IPA 40 mg/kg) while Groups D and E were co-treated with EPI (2.5 mg/mL) together with 3-IPA (D: 20 and E: 40 mg/kg). Following sacrifice, oxidative status, lipid profile, transaminases relevant to cardiac function, and inflammatory biomarkers were analysed. Also, 8-hydroxyl-2'-deoxyguanosine (8-OHdG) and cardiac troponin T (cTnT) levels were assessed using an enzyme-linked immunosorbent assay (ELISA). EPI-initiated increases in cardiotoxicity biomarkers were significantly (p < 0.05) reduced by 3-IPA supplementation. Decreased antioxidant and increases in reactive oxygen and nitrogen species (RONS), 8-OHdG and lipid peroxidation were lessened (p < 0.05) in rat hearts co-treated with 3-IPA. EPI-induced increases in nitric oxide and myeloperoxidase were reduced (p < 0.05) by 3-IPA co-treatment. In addition, 3-IPA reversed EPI-mediated alterations in alanine aminotransferase (ALT), aspartate amino transaminases (AST), lactate dehydrogenase (LDH), cardiac troponin T (cTnT), and serum lipid profile including total cholesterol and triglycerides. Microscopic examination of the cardiac tissues showed that histopathological lesions severity induced by EPI was lesser in 3-IPA co-treated rats. Our findings demonstrate that supplementing endogenously derived 3-IPA can enhance antioxidant protection in the cardiac tissue susceptible to EPI toxicity in female rats. These findings may benefit breast cancer patients undergoing chemotherapy by further validating these experimental data.


Subject(s)
Breast Neoplasms , Cardiotoxicity , Humans , Rats , Female , Animals , Epirubicin/toxicity , Epirubicin/metabolism , Cardiotoxicity/drug therapy , Myocytes, Cardiac/metabolism , Rats, Wistar , Antioxidants/therapeutic use , Troponin T , Propionates/pharmacology , Reactive Oxygen Species/metabolism , Breast Neoplasms/metabolism , Biomarkers/metabolism , Oxidative Stress
2.
Sci Rep ; 13(1): 12172, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37500724

ABSTRACT

We investigated the impact of Coartem™ (COA) and aflatoxin B1 (AFB1) on rats' hypothalamus, epididymis, and testis. Male rats were randomly grouped (n = 5 rats) and treated: control group (corn oil), AFB1 (70 µg/kg), COA (5 mg/kg), COA + AFB1 (5 + 0.035 mg/kg) and COA + AFB1 (5 + 0.07 mg/kg) for 28 days. Blood samples were collected for serum prolactin, testosterone, follicle-stimulating and luteinising hormones (FSH and LH) assay upon sacrifice. The semen, hypothalamus, epididymis, and testes were harvested for morphological, biochemical, and histopathology determination of oxidative, inflammation stress, genomic integrity, and pathological alterations. Exposure to the COA and AFB1 caused the cauda epididymal spermatozoa to display low motility, viability, and volume, with increased abnormalities. Hormonal disruption ensued in animals exposed to COA and AFB1 alone or together, exemplified by increased prolactin, and decreased testosterone, FSH and LH levels. Treatment-related reduction in biomarkers of testicular metabolism-acid and alkaline phosphatases, glucose-6-phosphate dehydrogenase, and lactate dehydrogenase-were observed. Also, COA and AFB1 treatment caused reductions in antioxidant (Glutathione and total thiols) levels and antioxidant enzyme (Catalase, superoxide dismutase, glutathione peroxidase, and glutathione-S-transferase) activities in the examined organs. At the same time, treatment-related increases in DNA damage (p53), oxidative stress (xanthine oxidase, reactive oxygen and nitrogen species and lipid peroxidation), inflammation (nitric oxide and tumour necrosis factor-alpha), and apoptosis (caspase-9, and -3) were observed. Chronic exposure to COA and AFB1 led to oxidative stress, inflammation, and DNA damage in male rats' hypothalamic-reproductive axis, which might potentiate infertility if not contained.


Subject(s)
Antimalarials , Antioxidants , Rats , Male , Animals , Antioxidants/metabolism , Antimalarials/pharmacology , Aflatoxin B1/metabolism , Artesunate/pharmacology , Lumefantrine/pharmacology , Prolactin/metabolism , Testis/metabolism , Oxidative Stress , Glutathione/metabolism , Testosterone , Follicle Stimulating Hormone , Inflammation/metabolism
3.
J Food Biochem ; 46(5): e14090, 2022 05.
Article in English | MEDLINE | ID: mdl-35112365

ABSTRACT

Aflatoxin B1 (AFB1 ) is a toxic metabolite of public health concern. The present study investigates the protective effects of caffeic acid (CA) against AFB1 -induced oxidative stress, inflammation, and apoptosis in the hypothalamus, epididymis, and testis of male rats. Five experimental rat cohorts (n = 6) were treated per os for 28 consecutive days as follows: Control (Corn oil 2 ml/kg body weight), AFB1 alone (50µg/kg), CA alone (40 mg/kg) and the co-treated rat cohorts (AFB1 : 50µg/kg + CA1: 20 or 40 mg/kg). Following sacrifice, the biomarkers of hypothalamic, epididymal, and testicular toxicities, antioxidant enzyme activities, myeloperoxidase (MPO) activity, as well as levels of nitric oxide (NO), reactive oxygen and nitrogen (RONS) species and lipid peroxidation (LPO) were analysed spectrophotometrically. Besides, the concentration of tumour necrosis factor-alpha (TNF-α), Bcl-2 and Bax proteins were assessed using ELISA. Results showed that the AFB1 -induced decrease in biomarkers of testicular, epididymal and hypothalamic toxicity was significantly (p < .05) alleviated in rats coexposed to CA. Moreover, the reduction of antioxidant status and the increase in RONS and LPO were lessened (p < .05) in rats co-treated with CA. AFB1 mediated increase in TNF-α, Bax, NO and MPO activity were reduced (p< .05) in the hypothalamus, epididymis, and testis of rats coexposed to CA. In addition, Bcl-2 levels were reduced in rats treated with CA dose-dependently. Light microscopic examination showed that histopathological lesions severity induced by AFB1 were alleviated in rats coexposed to CA. Taken together, the amelioration of AFB1 -induced neuronal and reproductive toxicities by CA involves anti-inflammatory, antioxidant, antiapoptotic mechanisms in rats. PRACTICAL APPLICATIONS: The beneficial antioxidant effects of caffeic acid (CA) are attributed to CA delocalized aromatic rings and free electrons, easily donated to stabilize reactive oxygen species. We report in vivo findings on CA and AfB1 mediated oxidative stress and reproductive dysfunction in rats. CA conjugated esters including chlorogenic acids are widely distributed in plants, and they act as a dietary source of natural defense against infections. CA can chelate heavy metals and reduce production of damaging free radicals to cellular macromolecules. Along these lines, CA can stabilize aflatoxin B1-epoxide as well and avert deleterious conjugates from forming with deoxyribonucleic acids. Hence CA, as a dietary phytochemical can protect against the damaging effects of toxins including aflatoxin B1 that contaminate food. CA dose-dependently abated oxidative, inflammatory, and apoptotic stimuli, improved functional characteristics of spermatozoa and reproductive hormone levels, and prevented histological alterations in experimental rats' hypothalamus and reproductive organs brought about by AFB1 toxicity.


Subject(s)
Aflatoxin B1 , Antioxidants , Aflatoxin B1/metabolism , Aflatoxin B1/toxicity , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Biomarkers/metabolism , Caffeic Acids/pharmacology , Male , Oxidation-Reduction , Rats , Testis , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/metabolism
4.
Toxicon ; 207: 1-12, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34995555

ABSTRACT

Aflatoxicosis can induce largescale toxicities in predisposed populations. Food fortification with adequate antioxidant sources may reduce the toxic burden from aflatoxicosis. We examined the individual and combined effect of Caffeic acid (CA) on the aflatoxin B1 (AFB1)-induced hepatic and renal injury in male rats. Five experimental rat cohort (n = 6) consisting of the control (2 mL/kg corn oil), AFB1 alone (50 µg/kg), CA alone (40 mg/kg), AFB1+CA1 (50 µg/kg + 20 mg/kg) and AFB1+CA2 (50 µg/kg + 40 mg/kg) were so treated for 28 consecutive days. Upon sacrifices, diagnostic markers of hepatorenal functions, oxidative stress, inflammation, oxidative deoxyribonucleic acid -DNA-damage and apoptosis were analysed. Our results showed that CA reduced AFB1-induced toxicities in rats' liver and kidneys by significantly increasing (p < 0.05) endogenous antioxidant and the anti-inflammatory IL-10 level. Caffeic acid simultaneously reduced hepatic and renal dysfunction biomarkers in the serum, oxidative stress, and lipid peroxidation levels. Besides, CA diminished reactive oxygen and nitrogen species, inflammatory nitric oxide levels, interleukin-1 ß and the activities of xanthine oxidase and myeloperoxidase. Additionally, CA reduced DNA damage and caspase-mediated apoptotic responses and preserved the cytoarchitecture of rats' liver and kidneys treated with AFB1. These data suggest that CA can be used as a food additive to mitigate AFB1-induced toxicity in the examined organs.


Subject(s)
Aflatoxin B1 , Liver , Aflatoxin B1/metabolism , Aflatoxin B1/toxicity , Animals , Caffeic Acids , Caspases/metabolism , DNA Damage , Liver/metabolism , Male , Oxidative Stress , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...