Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Cell Mol Gastroenterol Hepatol ; 11(4): 1177-1197, 2021.
Article in English | MEDLINE | ID: mdl-33418102

ABSTRACT

Inflammatory bowel disease (IBD) patients have an increased risk of developing colitis-associated colon cancer (CAC); however, the basis for inflammation-induced genetic damage requisite for neoplasia is unclear. Several studies have shown that IBD patients have signs of increased oxidative damage, which could be a result of genetic and environmental factors such as an excess in oxidant molecules released during chronic inflammation, mitochondrial dysfunction, a failure in antioxidant capacity, or oxidant promoting diets. It has been suggested that chronic oxidative environment in the intestine leads to the DNA lesions that precipitate colon carcinogenesis in IBD patients. Indeed, several preclinical and clinical studies show that different endogenous and exogenous antioxidant molecules are effective at reducing oxidation in the intestine. However, most clinical studies have focused on the short-term effects of antioxidants in IBD patients but not in CAC. This review article examines the role of oxidative DNA damage as a possible precipitating event in CAC in the context of chronic intestinal inflammation and the potential role of exogenous antioxidants to prevent these cancers.


Subject(s)
Antioxidants/pharmacology , Colitis-Associated Neoplasms/prevention & control , Colitis/complications , Animals , Colitis-Associated Neoplasms/etiology , Colitis-Associated Neoplasms/pathology , Humans
3.
Nat Commun ; 11(1): 1802, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286276

ABSTRACT

Inflammatory bowel disease patients have a greatly increased risk of developing colitis-associated colon cancer (CAC); however, the basis for inflammation-induced genetic damage requisite for neoplasia is unclear. Using three models of CAC, we find that sustained inflammation triggers 8-oxoguanine DNA lesions. Strikingly, antioxidants or iNOS inhibitors reduce 8-oxoguanine and polyps in CAC models. Because the mismatch repair (MMR) system repairs 8-oxoguanine and is frequently defective in colorectal cancer (CRC), we test whether 8-oxoguanine mediates oncogenesis in a Lynch syndrome (MMR-deficient) model. We show that microbiota generates an accumulation of 8-oxoguanine lesions in MMR-deficient colons. Accordingly, we find that 8-oxoguanine is elevated in neoplastic tissue of Lynch syndrome patients compared to matched untransformed tissue or non-Lynch syndrome neoplastic tissue. While antioxidants reduce 8-oxoguanine, they do not reduce CRC in Lynch syndrome models. Hence, microbe-induced oxidative/nitrosative DNA damage play causative roles in inflammatory CRC models, but not in Lynch syndrome models.


Subject(s)
Colitis/complications , Colitis/pathology , Colorectal Neoplasms/complications , Colorectal Neoplasms/pathology , DNA Damage , Helicobacter pylori/physiology , Oxidative Stress , Adenomatous Polyposis Coli/complications , Adenomatous Polyposis Coli/pathology , Adult , Aged , Aged, 80 and over , Animals , Antioxidants/pharmacology , Carcinogenesis/drug effects , Carcinogenesis/pathology , Colitis/chemically induced , Colitis/microbiology , Colon/drug effects , Colon/pathology , Colorectal Neoplasms/microbiology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Repair/drug effects , Dextran Sulfate , Disease Models, Animal , Dysbiosis/complications , Dysbiosis/pathology , Escherichia coli/metabolism , Female , Guanosine/analogs & derivatives , Guanosine/metabolism , Helicobacter Infections/complications , Helicobacter pylori/drug effects , Humans , Inflammation/complications , Inflammation/pathology , Interleukin-10/deficiency , Interleukin-10/metabolism , Male , Mice, Inbred C57BL , Middle Aged , Mutation/genetics , Oxidative Stress/drug effects
4.
Nat Commun ; 9(1): 1006, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29520062

ABSTRACT

Class switch recombination (CSR) has a fundamental function during humoral immune response and involves the induction and subsequent repair of DNA breaks in the immunoglobulin (Ig) switch regions. Here we show the role of Usp22, the SAGA complex deubiquitinase that removes ubiquitin from H2B-K120, in the repair of programmed DNA breaks in vivo. Ablation of Usp22 in primary B cells results in defects in γH2AX and impairs the classical non-homologous end joining (c-NHEJ), affecting both V(D)J recombination and CSR. Surprisingly, Usp22 depletion causes defects in CSR to various Ig isotypes, but not IgA. We further demonstrate that IgG CSR primarily relies on c-NHEJ, whereas CSR to IgA is more reliant on the alternative end joining pathway, indicating that CSR to different isotypes involves distinct DNA repair pathways. Hence, Usp22 is the first deubiquitinase reported to regulate both V(D)J recombination and CSR in vivo by facilitating c-NHEJ.


Subject(s)
DNA End-Joining Repair , Deubiquitinating Enzymes/metabolism , Endopeptidases/metabolism , Immunity, Humoral/genetics , Immunoglobulin Class Switching , V(D)J Recombination , Animals , B-Lymphocytes , Deubiquitinating Enzymes/genetics , Endopeptidases/genetics , Female , Histones/genetics , Histones/metabolism , Immunoglobulin Isotypes/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Primary Cell Culture , Ubiquitin/metabolism , Ubiquitin Thiolesterase
5.
Mol Ther Nucleic Acids ; 5(7): e335, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27404720

ABSTRACT

Ribozyme genes were designed to reduce voluntary alcohol drinking in a rat model of alcohol dependence. Acetaldehyde generated from alcohol in the liver is metabolized by the mitochondrial aldehyde dehydrogenase (ALDH2) such that diminishing ALDH2 activity leads to the aversive effects of blood acetaldehyde upon alcohol intake. A stepwise approach was followed to design genes encoding ribozymes targeted to the rat ALDH2 mRNA. In vitro studies of accessibility to oligonucleotides identified suitable target sites in the mRNA, one of which fulfilled hammerhead and hairpin ribozyme requirements (CGGUC). Ribozyme genes delivered in plasmid constructs were tested in rat cells in culture. While the hairpin ribozyme reduced ALDH2 activity 56% by cleavage and blockade (P < 0.0001), the hammerhead ribozyme elicited minor effects by blockade. The hairpin ribozyme was tested in vivo by adenoviral gene delivery to UChB alcohol drinker rats. Ethanol intake was curtailed 47% for 34 days (P < 0.0001), while blood acetaldehyde more than doubled upon ethanol administration and ALDH2 activity dropped 25% in liver homogenates, not affecting other ALDH isoforms. Thus, hairpin ribozymes targeted to 16 nt in the ALDH2 mRNA provide durable and specific effects in vivo, representing an improvement on previous work and encouraging development of gene therapy for alcoholism.

6.
EMBO J ; 35(8): 845-65, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26869642

ABSTRACT

Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) areERfoldases identified as possibleALSbiomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized fourALS-linked mutations recently identified in two majorPDIgenes,PDIA1 andPDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of thesePDIvariants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutantPDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of thesePDImutants. Finally, targetingERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifiesERproteostasis imbalance as a risk factor forALS, driving initial stages of the disease.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Motor Neurons/pathology , Procollagen-Proline Dioxygenase/genetics , Protein Disulfide-Isomerases/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Genetically Modified , Electromyography , Embryo, Nonmammalian , Endoplasmic Reticulum Stress/genetics , Humans , Mice, Knockout , Mutation , Neurites/pathology , Procollagen-Proline Dioxygenase/metabolism , Protein Disulfide-Isomerases/metabolism , Zebrafish/embryology , Zebrafish/genetics
7.
Cancer Discov ; 5(10): 1021-3, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26429936

ABSTRACT

T regulatory cells trigger an oncogenic immune response against enterotoxigenic B. fragilis infection. The implications of an overall shift in the colonic homeostasis are discussed.


Subject(s)
Bacteroides Infections/complications , Bacteroides fragilis/physiology , Cell Transformation, Neoplastic , Colonic Neoplasms/etiology , Colonic Neoplasms/metabolism , Interleukin-17/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals
8.
Bioessays ; 37(4): 403-12, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25601287

ABSTRACT

The gut microbiota is an important component of the human body and its immune-modulating and metabolic activities are critical to maintain good health. Gut microbes, however, are sensitive to changes in diet, exposure to antibiotics, or infections, all of which cause transient disruptions in the microbial composition, a phenomenon known as dysbiosis. It is now recognized that microbial dysbiosis is at the root of many gastrointestinal disorders. However, the mechanisms through which bacterial dysbiosis initiates disease are not fully understood. Microbially-derived metabolites and their role in disease have also attracted significant attention. Identification of cancer-associated bacteria and understanding the contributions of microbial metabolism in health and disease are exciting but challenging areas that will allow defining microbial biomarkers for predicting gastrointestinal disorders. Understanding the complex interactions between gut microbiota, diet, host immune system and host genetics will be critical to developing more personalized therapies and approaches to treat disease.


Subject(s)
Colonic Neoplasms/microbiology , Gastrointestinal Diseases , Gastrointestinal Tract/microbiology , Microbiota/physiology , Animals , Colonic Neoplasms/prevention & control , Dysbiosis/microbiology , Dysbiosis/physiopathology , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/prevention & control , Gastrointestinal Tract/pathology , Gastrointestinal Tract/physiology , Humans , Probiotics
9.
J Nutr ; 144(11): 1725-33, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25143376

ABSTRACT

BACKGROUND: Few studies have focused on the ability of prebiotics to prevent pathogen-induced cellular changes or alter the composition of the intestinal microbiota in complimentary relevant cell and animal models of inflammatory bowel disease. OBJECTIVE: The objective of this study was to determine if pretreatment with inulin and a short-chain fructo-oligosaccharide (sc-FOS) prevents enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection in Caco2-bbe epithelial cells and what effect 10% wt:v sc-FOS or inulin has on C57BL/6 mice under sham conditions or pretreatment with prebiotics before Citrobacter rodentium infection (10(8) colony-forming units). METHODS: Actin rearrangement and tight junction protein (zona occludin-1) were examined with immunofluorescence. Barrier function was assessed by a fluorescent probe and by measuring transepithelial electrical resistance (TER). Alterations in cytokine gene expression and microbiome were assessed with quantitative reverse transcriptase-polymerase chain reaction and fluorescence in situ hybridization. Short-chain fatty acids (SCFAs) were measured by GC. RESULTS: sc-FOS added to monolayers altered actin polymerization without affecting TER or permeability to a fluorescein isothiocyanate (FITC) probe, whereas inulin increased TER (P < 0.005) and altered actin arrangement without affecting FITC permeability. Neither prebiotic attenuated EHEC-induced decreases in barrier function. Prebiotics increased interleukin 10 (Il10) and transforming growth factor-ß (Tgfß) cytokine responses alone (P < 0.05) or with EHEC O157:H7 infection (P < 0.05) in vitro. Increases in tumor necrosis factor-α (Tnfα) (P < 0.05) and decreases in chemokine CXC motif ligand 8 (Cxcl8) (P < 0.05) expression were observed with prebiotic treatment prior to EHEC infection. No differences were noted in barrier function or cytokine responses in the absence or presence of C. rodentium in vivo. Alterations in microbiome were evident at 6 d and 10 d postinfection in treatment groups, but a change in C. rodentium load was not observed. Inulin and sc-FOS (P < 0.05) increased fecal SCFAs in the absence of infection. CONCLUSION: This study provides new insights as to how prebiotics act in complementary in vitro and in vivo models of intestinal injury.


Subject(s)
Enterobacteriaceae Infections/complications , Escherichia coli O157 , Inflammation/drug therapy , Inulin/pharmacology , Oligosaccharides/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Caco-2 Cells , Citrobacter rodentium , Colitis/drug therapy , Colitis/microbiology , Feces/microbiology , Female , Humans , Inulin/chemistry , Mice , Mice, Inbred C57BL , Oligosaccharides/chemistry , Prebiotics
10.
Cell ; 158(2): 288-299, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25036629

ABSTRACT

The etiology of colorectal cancer (CRC) has been linked to deficiencies in mismatch repair and adenomatous polyposis coli (APC) proteins, diet, inflammatory processes, and gut microbiota. However, the mechanism through which the microbiota synergizes with these etiologic factors to promote CRC is not clear. We report that altering the microbiota composition reduces CRC in APC(Min/+)MSH2(-/-) mice, and that a diet reduced in carbohydrates phenocopies this effect. Gut microbes did not induce CRC in these mice through an inflammatory response or the production of DNA mutagens but rather by providing carbohydrate-derived metabolites such as butyrate that fuel hyperproliferation of MSH2(-/-) colon epithelial cells. Further, we provide evidence that the mismatch repair pathway has a role in regulating ß-catenin activity and modulating the differentiation of transit-amplifying cells in the colon. These data thereby provide an explanation for the interaction between microbiota, diet, and mismatch repair deficiency in CRC induction. PAPERCLIP:


Subject(s)
Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Dietary Carbohydrates/metabolism , MutS Homolog 2 Protein/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Butyrates/metabolism , Cell Proliferation , Cell Transformation, Neoplastic , Colonic Polyps/metabolism , Colonic Polyps/microbiology , Colonic Polyps/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , DNA Mismatch Repair , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Inflammation/genetics , Inflammation/metabolism , Inflammation/microbiology , Mice , Mice, Inbred C57BL , MutL Protein Homolog 1 , MutS Homolog 2 Protein/genetics , Nuclear Proteins/metabolism , Specific Pathogen-Free Organisms , beta Catenin/metabolism
11.
Mol Cell ; 54(2): 309-20, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24766895

ABSTRACT

In recent years, our understanding of the mechanisms underlying colorectal carcinogenesis has vastly expanded. Underlying inflammation within the intestine, diet, and most recently, the gut microbiota, have been demonstrated to influence the development of colorectal cancer. However, since cancer is ultimately a genetic disease, these factors are thought to create genotoxic stress within the intestinal environment to promote genetic and epigenetic alterations leading to cancer. In this review, we will focus on how gut microbes intersect with inflammation, diet, and host genetics to influence the development of colon cancer.


Subject(s)
Colonic Neoplasms/microbiology , Intestines/microbiology , Microbiota/immunology , Carcinogenesis , Colitis/microbiology , Colitis/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , DNA Damage , Disease Progression , Humans , Immunity, Innate , Inflammation
12.
EMBO J ; 31(10): 2322-35, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22510886

ABSTRACT

Adaptation to endoplasmic reticulum (ER) stress depends on the activation of the unfolded protein response (UPR) stress sensor inositol-requiring enzyme 1α (IRE1α), which functions as an endoribonuclease that splices the mRNA of the transcription factor XBP-1 (X-box-binding protein-1). Through a global proteomic approach we identified the BCL-2 family member PUMA as a novel IRE1α interactor. Immun oprecipitation experiments confirmed this interaction and further detected the association of IRE1α with BIM, another BH3-only protein. BIM and PUMA double-knockout cells failed to maintain sustained XBP-1 mRNA splicing after prolonged ER stress, resulting in early inactivation. Mutation in the BH3 domain of BIM abrogated the physical interaction with IRE1α, inhibiting its effects on XBP-1 mRNA splicing. Unexpectedly, this regulation required BCL-2 and was antagonized by BAD or the BH3 domain mimetic ABT-737. The modulation of IRE1α RNAse activity by BH3-only proteins was recapitulated in a cell-free system suggesting a direct regulation. Moreover, BH3-only proteins controlled XBP-1 mRNA splicing in vivo and affected the ER stress-regulated secretion of antibodies by primary B cells. We conclude that a subset of BCL-2 family members participates in a new UPR-regulatory network, thus assuming apoptosis-unrelated functions.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Endoribonucleases/metabolism , Membrane Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism , Unfolded Protein Response , Animals , Apoptosis Regulatory Proteins/genetics , Bcl-2-Like Protein 11 , Gene Knockout Techniques , Immunoprecipitation , Membrane Proteins/genetics , Mice , Protein Binding , Protein Interaction Mapping , Proteome/analysis , Proto-Oncogene Proteins/genetics , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...