Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36556626

ABSTRACT

Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications.

2.
J Am Soc Mass Spectrom ; 33(10): 1840-1849, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36149251

ABSTRACT

Electrochemically deposited electroactive polymer (EAP) films were investigated for their potential to enhance the performance of ambient ionization mass spectrometry (MS). Several EAPs of varying hydrophobicity were evaluated, including the superhydrophobic polymer poly[3,4-(2-dodecylethylenedioxy)thiophene] (PEDOT-C12). The EAPs were electropolymerized onto indium tin oxide-coated glass, placed in front of the inlet of a mass spectrometer, and charged to 3.5-4.5 kV. Analyte solutions were then applied to the surface, initiating ionization events. Analytes including peptides and small molecule pharmaceuticals were studied in 0.1% formic acid in methanol/water ("spray solvent") as well as in synthetic biological fluid matrices, using both EAP spray ionization (EAPSI) and paper spray ionization (PSI). Each EAPSI analysis required as little as 0.1 µL of solution, and the resulting sprays were stable and reproducible. The sensitivity, limit of detection (LOD), and limit of quantification (LOQ) were evaluated using bradykinin, cannabinol, and cannabidiol, which were prepared in pure solvents, artificial urine, and artificial saliva. The limits of detection and quantitation for EAPSI were improved relative to PSI by 1-2 orders of magnitude for analytes prepared in methanol/water and on the same order of magnitude as PSI for analytes prepared in artificial saliva and urine. This EAP-based spray ionization technique offers possibilities for rapid MS analysis with small sample sizes, high accuracy, and miniaturization of MS instruments.


Subject(s)
Cannabidiol , Polymers , Bradykinin , Cannabinol , Mass Spectrometry/methods , Methanol , Peptides , Pharmaceutical Preparations , Saliva, Artificial , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Thiophenes , Water
3.
Materials (Basel) ; 14(20)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34683737

ABSTRACT

Polythiophenes (PTs) constitute a diverse array of promising materials for conducting polymer applications. However, many of the synthetic methods to produce PTs have been optimized only for the prototypical alkyl-substituted example poly(3-hexylthiophene) (P3HT). Improvement of these methods beyond P3HT is key to enabling the widespread application of PTs. In this work, P3HT and two ether-substituted PTs poly(2-dodecyl-2H,3H-thieno[3,4-b][1,4]dioxine) (PEDOT-C12) and poly(3,4-bis(hexyloxy)thiophene) (PBHOT) are synthesized by the FeCl3-initiated oxidative method under different conditions. Polymerization was carried out according to a common literature procedure ("reverse addition") and a modified method ("standard addition"), which differ by the solvent system and the order of addition of reagents to the reaction mixture. Gel-permeation chromatography (GPC) was performed to determine the impact of the different methods on the molecular weights (Mw) and degree of polymerization (Xw) of the polymers relative to polystyrene standards. The standard addition method produced ether-substituted PTs with higher Mw and Xw than those produced using the reverse addition method for sterically unhindered monomers. For P3HT, the highest Mw and Xw were obtained using the reverse addition method. The results show the oxidation potential of the monomer and solution has the greatest impact on the yield and Xw obtained and should be carefully considered when optimizing the reaction conditions for different monomers.

4.
Materials (Basel) ; 12(16)2019 Aug 18.
Article in English | MEDLINE | ID: mdl-31426613

ABSTRACT

Conducting polymers are of interest due to their unique behavior on exposure to electric fields, which has led to their use in flexible electronics, sensors, and biomaterials. The unique electroactive properties of conducting polymers allow them to be used to prepare biosensors that enable real time, point of care (POC) testing. Potential advantages of these devices include their low cost and low detection limit, ultimately resulting in increased access to treatment. This article presents a review of the characteristics of conducting polymer-based biosensors and the recent advances in their application in the recognition of disease biomarkers.

5.
Inorg Chem ; 57(7): 3548-3558, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29166005

ABSTRACT

The self-assembly behavior of a tritopic 2,2':6',2″-terpyridine (tpy) ligand with Cd(II), Zn(II), and Fe(II) has been exploited herein to generate a series of tetrameric and hexameric macrocycles. The main advantage of using such transition metals with an octahedral coordination geometry is their distinct coordination abilities (e.g., binding strength and reversibility). With the same ligand, this study reveals that the supramolecular structural variation between tetrameric and hexameric macrocycle architectures can be precisely controlled using different metal ions with the same coordination geometry. When Cd(II) was used, a tetrameric macrocycle was the only observed structure in the self-assembly, whereas Zn(II) and Fe(II) assembled a mixture of tetrameric and hexameric macrocycles. Because of the high stability of Fe(II) as the coordination center, we successfully isolated tetrameric and hexameric macrocycles using a regular column. In-depth characterization was carried out to establish the proposed structures, including multinuclear NMR (1H, 19F, and 13C) analysis, electrospray ionization mass spectrometry, and 2D ion-mobility mass spectrometry.

6.
Int J Nanomedicine ; 12: 615-632, 2017.
Article in English | MEDLINE | ID: mdl-28144143

ABSTRACT

Laser-mediated photothermal ablation of cancer cells aided by photothermal agents is a promising strategy for localized, externally controlled cancer treatment. We report the synthesis, characterization, and in vitro evaluation of conductive polymeric nanoparticles (CPNPs) of poly(diethyl-4,4'-{[2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-1,4-phenylene] bis(oxy)}dibutanoate) (P1) and poly(3,4-ethylenedioxythiophene) (PEDOT) stabilized with 4-dodecylbenzenesulfonic acid and poly(4-styrenesulfonic acid-co-maleic acid) as photothermal ablation agents. The nanoparticles were prepared by oxidative-emulsion polymerization, yielding stable aqueous suspensions of spherical particles of <100 nm diameter as determined by dynamic light scattering and electron microscopy. Both types of nanoparticles show strong absorption of light in the near infrared region, with absorption peaks at 780 nm for P1 and 750 nm for PEDOT, as well as high photothermal conversion efficiencies (~50%), that is higher than commercially available gold-based photothermal ablation agents. The nanoparticles show significant photostability as determined by their ability to achieve consistent temperatures and to maintain their morphology upon repeated cycles of laser irradiation. In vitro studies in MDA-MB-231 breast cancer cells demonstrate the cytocompatibility of the CPNPs and their ability to mediate complete cancer cell ablation upon irradiation with an 808-nm laser, thereby establishing the potential of these systems as agents for laser-induced photothermal therapy.


Subject(s)
Electric Conductivity , Hyperthermia, Induced , Lasers , Nanoparticles/chemistry , Neoplasms/therapy , Phototherapy , Polymers/chemistry , Polymers/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Line, Tumor , Humans , Maleates/chemical synthesis , Maleates/chemistry , Nanoparticles/ultrastructure , Polystyrenes/chemical synthesis , Polystyrenes/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...