Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4389, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37474517

ABSTRACT

Recently nitrogen-hydrogen compounds have successfully been applied as co-catalysts for mild conditions ammonia synthesis. Ca2NH was shown to act as a H2 sink during reaction, with H atoms from its lattice being incorporated into the NH3(g) product. Thus the ionic transport and diffusion properties of the N-H co-catalyst are fundamentally important to understanding and developing such syntheses. Here we show hydride ion conduction in these materials. Two distinct calcium nitride-hydride Ca2NH phases, prepared via different synthetic paths are found to show dramatically different properties. One phase (ß) shows fast hydride ionic conduction properties (0.08 S/cm at 600 °C), on a par with the best binary ionic hydrides and 10 times higher than CaH2, whilst the other (α) is 100 times less conductive. An in situ combined analysis techniques reveals that the effective ß-phase conducts ions via a vacancy-mediated phenomenon in which the charge carrier concentration is dependent on the ion concentration in the secondary site and by extension the vacancy concentration in the main site.

2.
Phys Chem Chem Phys ; 21(29): 15974-15987, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31294442

ABSTRACT

Metal/semiconductor interactions affect electron transfer rates and this is central to photocatalytic hydrogen ion reduction. While this interaction has been studied in great detail on metal oxide semiconductors, not much is known of Au particles on top of polymeric semiconductors. The effects of gold nanoparticle size and dispersion on top of g-C3N4 were studied by core and valence level spectroscopy and transmission electron microscopy in addition to catalytic tests. The as-prepared, non-calcined catalysts displayed Au particles with uniform dimension (mean particle size = 1.8 nm) and multiple electronic states: XPS Au 4f7/2 lines at 84.9 and 87.1 eV (each with a spin-orbit splitting of 3.6-3.7 eV). These particles, which did not show localized surface plasmon resonance (LSPR), before the reaction, doubled in size after the reaction giving a pronounced LSPR at about 550 nm. The effect of the heating environment on these particles (in air or in H2) was further investigated. While heating in H2 gave Au nanoparticles of different shapes, heating under O2 gave exclusively spherical particles. Similar activity towards photocatalytic hydrogen ion reduction under UV excitation was seen in both cases, however. XPS Au 4f analyses indicated that an increase in deposition time, during catalyst preparation, resulted in an increase in the initial fraction of oxidized gold particles, which were easily reduced under hydrogen. The valence band region for Au/gC3N4 was further studied in an effort to compare it to what is already known for Au/metal oxide semiconductors. A shift of over 2 eV for the Au 5d doublets was noticed between reduced and oxidized gold particles with mean particle sizes between 2 and 6 nm, which is consistent with the final state effect. A narrow range of gold loading for optimal catalytic performance was seen, where it seems that a density of one Au particle per 10 × 10 nm2 is the most suitable. Particle size and shape had a minor effect on performance, which may indicate the absence of a plasmonic effect on the reaction rate.

3.
Faraday Discuss ; 190: 551-9, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27483385

ABSTRACT

Liquid salts comprising molten salts and ionic liquids offer important media to address both energy and materials challenges. Here we review topics presented in this Faraday Discussion volume related to improved electrowinning of metals, optimisation of processes, new electrochemical device concepts, chemistry in ionic liquids, conversion of biomass, carbon chemistry and nuclear applications. The underlying phenomenology is then reviewed and commentary given. Some future applications are then discussed, further exemplifying the high potential rewards achievable from these chemistries.

4.
Phys Chem Chem Phys ; 18(29): 19738-45, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27384817

ABSTRACT

The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials. We present here a comprehensive study of the energy levels present in a common structure of perovskite solar cell using an advanced macroscopic Kelvin probe and UV air photoemission setup. By constructing a detailed map of the energy levels in the system we are able to predict the importance of each layer to the open circuit voltage of the solar cell, which we then back up through measurements of the surface photovoltage of the cell under white illumination. Our results demonstrate the effectiveness of air photoemission and Kelvin probe contact potential difference measurements as a method of identifying the factors contributing to the open circuit voltage in a solar cell, as well as being an excellent way of probing the physics of new materials.

5.
Nanoscale ; 8(12): 6623-8, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26939617

ABSTRACT

Device grade silicon nanocrystals (NCs) are synthesized using an atmospheric-pressure plasma technique. The Si NCs have a small and well defined size of about 2.3 nm. The synthesis system allows for the direct creation of thin films, enabling a range of measurements to be performed and easy implementation of this material in different devices. The chemical stability of the Si NCs is evaluated, showing relatively long-term durability thanks to hydrogen surface terminations. Optical and electrical characterization techniques, including Kelvin probe, ultraviolet photoemission spectroscopy and Mott-Schottky analysis, are employed to determine the energy band diagram of the Si NCs.

6.
Phys Chem Chem Phys ; 17(21): 13929-36, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25948234

ABSTRACT

Loading of a co-catalyst on the surface of a semiconductor photocatalyst is often carried out without considering the effect of the loading procedure on the final product. The present study looks in detail at the effect that the loading method has on the morphology and final composition of platinum-based nanoparticles by means of XPS and TEM analysis. Additionally, reduction pre-treatments are performed to investigate how the coverage, crystallinity and composition of the NPs affect the photocatalytic H2 evolution. The activity of Pt-g-C3N4 can significantly be enhanced by controlling the properties of the co-catalyst NPs.

7.
Nat Mater ; 3(1): 17-27, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14704781

ABSTRACT

Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000 degrees C. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode or anode. In terms of mitigating global warming, the ability of the SOFC to use commonly available fuels at high efficiency, promises an effective and early reduction in carbon dioxide emissions, and hence is one of the lead new technologies for improving the environment. Here, we discuss recent developments of SOFC fuel electrodes that will enable the better use of readily available fuels.


Subject(s)
Ceramics/chemistry , Electric Power Supplies/trends , Electrochemistry/instrumentation , Electrochemistry/methods , Electrodes , Energy Transfer , Hydrogen/chemistry , Metals/chemistry , Temperature , Conservation of Natural Resources/trends , Electrochemistry/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...