Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Neurotrauma ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38588130

ABSTRACT

Traumatic brain injury (TBI) patients frequently experience chronic pain that can enhance their suffering and significantly impair rehabilitative efforts. Clinical studies suggest that damage to the periaqueductal gray matter (PAG) following TBI, a principal center involved in endogenous pain control, may underlie the development of chronic pain. We hypothesized that TBI would diminish the usual pain control functions of the PAG, but that directly stimulating this center using a chemogenetic approach would restore descending pain modulation. We used a well-characterized lateral fluid percussion model (1.3 ± 0.1 atm) of TBI in male rats (n = 271) and measured hindpaw mechanical nociceptive withdrawal thresholds using von Frey filaments. To investigate the role of the PAG in pain both before and after TBI, we activated the neurons of the PAG using a Designer Receptor Exclusively Activated by Designer Drug (DREADD) viral construct. Immunohistochemical analysis of brain tissue was used to assess the location and confirm the appropriate expression of the viral constructs in the PAG. Activation of the PAG DREADD using clozapine N-oxide (CNO) caused hindpaw analgesia that could be blocked using opioid receptor antagonist, naloxone, in uninjured but not TBI rats. Due to the importance of descending serotonergic signaling in modulating nociception, we ablated spinal serotonin signaling using 5,7-DHT. This treatment strongly reduced CNO-mediated anti-nociceptive effects in TBI but not uninjured rats. To define the serotonergic receptor(s) required for the CNO-stimulated effects in TBI rats, we administered 5-HT7 (SB-269970) and 5-HT1A (WAY-100635) receptor antagonists but observed no effects. The selective 5-HT2A receptor antagonist ketanserin, however, blocked CNO's effects in the DREADD expressing TBI but not DREADD expressing sham TBI animals. Blockade of alpha-1 adrenergic receptors with prazosin also had no effect after TBI. Descending pain control originating in the PAG is mediated through opioid receptors in uninjured rats. TBI, however, fundamentally alters the descending nociceptive control circuitry such that serotonergic influences predominate, and those are mediated by the 5-HT2A receptor. These results provide further evidence that the PAG is a key target for anti-nociception after TBI.

2.
Anesth Analg ; 138(4): 866-877, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37083595

ABSTRACT

BACKGROUND: Individuals recovering from mild traumatic brain injury (mTBI) have increased rates of acute and chronic pain. However, the mechanism through which mTBI triggers heightened pain responses and the link between mTBI and postsurgical pain remain elusive. Recent data suggest that dysregulated serotonergic pain-modulating circuits could be involved. We hypothesized that mTBI triggers dysfunction in descending serotonergic pain modulation, which exacerbates acute pain and delays pain-related recovery after surgery. METHODS: Using mouse models of mTBI and hindpaw incision for postsurgical pain in C57BL/6J mice, mechanical withdrawal thresholds were assessed throughout the postsurgical period. To determine whether mTBI leads to persistent alteration of endogenous opioid tone, mu-opioid receptors (MORs) were blocked with naloxone. Finally, the role of descending serotonergic signaling on postsurgical allodynia in animals with mTBI was examined using ondansetron (5-HT 3 receptor antagonist) or a serotonin-specific neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), to ablate descending serotonergic fibers. The treatment effects on withdrawal thresholds were normalized to baseline (percentage of maximum possible effect, MPE%), and analyzed using paired t -test or 2-way repeated-measures ANOVA with post hoc multiple comparisons. RESULTS: Post-mTBI mice demonstrated transient allodynia in hindpaws contralateral to mTBI, while no nociceptive changes were observed in sham-mTBI animals (mean difference, MD, MPE%, post-mTBI day 3: -60.9; 95% CI, -88.7 to -35.0; P < .001). After hindpaw incision, animals without mTBI exhibited transient allodynia, while mice with prior mTBI demonstrated prolonged postsurgical allodynia (MD-MPE% postsurgical day 14: -65.0; 95% CI, -125.4 to -4.5; P = .04). Blockade of MORs using naloxone transiently reinstated allodynia in mTBI animals but not in sham-mTBI mice (MD-MPE% post-naloxone: -69.9; 95% CI, -94.8 to -45.1; P < .001). Intrathecal administration of ondansetron reversed the allodynia observed post-mTBI and postincision in mTBI mice (compared to vehicle-treated mTBI mice, MD-MPE% post-mTBI day 3: 82.7; 95% CI, 58.5-106.9; P < .001; postsurgical day 17: 62.5; 95% CI, 38.3-86.7; P < .001). Both the acute allodynia after TBI and the period of prolonged allodynia after incision in mTBI mice were blocked by pretreatment with 5,7-DHT (compared to sham-mTBI mice, MD-MPE% post-mTBI day 3: 0.5; 95% CI, -18.5 to 19.5; P = .99; postsurgical day 14: -14.6; 95% CI, -16.7 to 45.9; P = .48). Similar behavioral patterns were observed in hindpaw ipsilateral to mTBI. CONCLUSIONS: Collectively, our results show that descending serotoninergic pain-facilitating signaling is responsible for nociceptive sensitization after mTBI and that central endogenous opioid tone opposes serotonin's effects. Understanding brain injury-related changes in endogenous pain modulation may lead to improved pain control for those with TBI undergoing surgery.


Subject(s)
Brain Concussion , Neuralgia , Mice , Animals , Hyperalgesia/chemically induced , Serotonin/adverse effects , Ondansetron/pharmacology , Analgesics, Opioid/adverse effects , Mice, Inbred C57BL , Pain, Postoperative/drug therapy , Pain, Postoperative/etiology , Naloxone/pharmacology
3.
Neurochem Int ; 171: 105630, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865340

ABSTRACT

While pain after trauma generally resolves, some trauma patients experience pain for months to years after injury. An example, relevant to both combat and civilian settings, is chronic pain after traumatic brain injury (TBI). Headache as well as pain in the back and extremities are common locations for TBI-related chronic pain to be experienced. TBI-related pain can exist alone or can exacerbate pain from other injuries long after healing has occurred. Consequences of chronic pain in these settings include increased suffering, higher levels of disability, serious emotional problems, and worsened cognitive deficits. The current review will examine recent evidence regarding dysfunction of endogenous pain modulatory mechanisms, neuroplastic changes in the trigeminal circuitry and alterations in spinal nociceptive processing as contributors to TBI-related chronic pain. Key pain modulatory centers including the locus coeruleus, periaqueductal grey matter, and rostroventromedial medulla are vulnerable to TBI. Both the rationales and existing evidence for the use of monoamine reuptake inhibitors, CGRP antagonists, CXCR2 chemokine receptor antagonists, and interventional therapies will be presented. While consensus guidelines for the management of chronic post-traumatic TBI-related pain are lacking, several approaches to this clinically challenging situation deserve focused evaluation and may prove to be viable therapeutic options.


Subject(s)
Brain Injuries, Traumatic , Chronic Pain , Humans , Chronic Pain/etiology , Chronic Pain/therapy , Brain Injuries, Traumatic/complications , Locus Coeruleus
4.
Sci Rep ; 13(1): 11778, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37479740

ABSTRACT

Inhibition of actin remodeling in nerves modulates action potential propagation and therefore could be used to treat acute pain. N-001 is a novel protein analgesic engineered from several C. Botulinum toxins. N-001 targets sensory neurons through ganglioside GT1b binding and ADP-ribosylates G-actin reducing actin remodeling. The activity and efficacy of N-001 was evaluated previously in vitro and in a mouse inflammatory pain model. To assess the relevance of N-001 for treatment of acute post-surgical pain, the current study evaluated the efficacy of N-001 in a mouse hind-paw incision model by peri-incisional and popliteal nerve block administration combined with mechanical testing. N-001 provided relief of pain-like behavior over 3 days and 2 days longer than the conventional long-acting anesthetic bupivacaine. Preclinical safety studies of N-001 indicated the drug produced no toxic or adverse immunological reactions over multiple doses in mice. These results combined with past targeting results encourage further investigation of N-001 as an analgesic for post-operative pain management with the potential to function as a differential nociceptor-specific nerve block.


Subject(s)
Acute Pain , Biological Products , Mice , Animals , Anesthetics, Local , Acute Pain/drug therapy , Actins , Pain, Postoperative/drug therapy , Analgesics/pharmacology , Analgesics/therapeutic use , Biological Products/therapeutic use
5.
J Pain ; 24(10): 1859-1874, 2023 10.
Article in English | MEDLINE | ID: mdl-37271350

ABSTRACT

Traumatic brain injury (TBI) can cause acute and chronic pain along with motor, cognitive, and emotional problems. Although the mechanisms are poorly understood, previous studies suggest disruptions in endogenous pain modulation may be involved. Voluntary exercise after a TBI has been shown to reduce some consequences of injury including cognitive impairment. We hypothesized, therefore, that voluntary exercise could augment endogenous pain control systems in a rodent model of TBI. For these studies, we used a closed-head impact procedure in male mice modeling mild TBI. We investigated the effect of voluntary exercise on TBI-induced hindpaw nociceptive sensitization, diffuse noxious inhibitory control failure, and periorbital sensitization after bright light stress, a model of post-traumatic headache. Furthermore, we investigated the effects of exercise on memory, circulating markers of brain injury, neuroinflammation, and spinal cord gene expression. We observed that exercise significantly reduced TBI-induced hindpaw allodynia and periorbital allodynia in the first week following TBI. We also showed that exercise improved the deficits associated with diffuse noxious inhibitory control and reduced bright light stress-induced allodynia up to 2 months after TBI. In addition, exercise preserved memory and reduced TBI-induced increases in spinal BDNF, CXCL1, CXCL2, and prodynorphin expression, all genes previously linked to TBI-induced nociceptive sensitization. Taken together, our observations suggest that voluntary exercise may reduce pain after TBI by reducing TBI-induced changes in nociceptive signaling and preserving endogenous pain control systems. PERSPECTIVE: This article evaluates the effects of exercise on pain-related behaviors in a preclinical model of traumatic brain injury (TBI). The findings show that exercise reduces nociceptive sensitization, loss of diffuse noxious inhibitory control, memory deficits, and spinal nociception-related gene expression after TBI. Exercise may reduce or prevent pain after TBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Chronic Pain , Post-Traumatic Headache , Mice , Male , Animals , Post-Traumatic Headache/complications , Hyperalgesia/etiology , Hyperalgesia/therapy , Brain Injuries, Traumatic/complications , Chronic Pain/complications
6.
Sci Rep ; 12(1): 16359, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175479

ABSTRACT

Traumatic brain injury (TBI) is a significant public health concern, with the majority of injuries being mild. Many TBI victims experience chronic pain. Unfortunately, the mechanisms underlying pain after TBI are poorly understood. Here we examined the contribution of spinal monoamine signaling to dysfunctional descending pain modulation after TBI. For these studies we used a well-characterized concussive model of mild TBI. Measurements included mechanical allodynia, the efficacy of diffuse noxious inhibitory control (DNIC) endogenous pain control pathways and lumber norepinephrine and serotonin levels. We observed that DNIC is strongly reduced in both male and female mice after mild TBI for at least 12 weeks. In naïve mice, DNIC was mediated through α2 adrenoceptors, but sensitivity to α2 adrenoceptor agonists was reduced after TBI, and reboxetine failed to restore DNIC in these mice. The intrathecal injection of ondansetron showed that loss of DNIC was not due to excess serotonergic signaling through 5-HT3 receptors. On the other hand, the serotonin-norepinephrine reuptake inhibitor, duloxetine and the serotonin selective reuptake inhibitor escitalopram both effectively restored DNIC after TBI in both male and female mice. Therefore, enhancing serotonergic signaling as opposed to noradrenergic signaling alone may be an effective pain treatment strategy after TBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Chronic Pain , Amines , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Duloxetine Hydrochloride/pharmacology , Female , Male , Mice , Norepinephrine , Ondansetron , Reboxetine , Receptors, Adrenergic , Serotonin , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use
7.
J Neurotrauma ; 39(13-14): 964-978, 2022 07.
Article in English | MEDLINE | ID: mdl-35412843

ABSTRACT

Disruption of endogenous pain control mechanisms including descending pain inhibition has been linked to several forms of pain including chronic pain after traumatic brain injury (TBI). The locus coeruleus (LC) is the principal noradrenergic (NA) nucleus participating in descending pain inhibition. We therefore hypothesized that selectively stimulating LC neurons would reduce nociception after TBI. All experiments used a well-characterized rat lateral fluid percussion model of TBI. NA neurons were stimulated by administering clozapine N-oxide (CNO) to rats selectively expressing a designer receptor exclusively activated by designer drug (DREADD) viral construct in their LC's. Mechanical nociceptive thresholds were measured using von Frey fibers. The efficacy of diffuse noxious inhibitory control (DNIC), a critical endogenous pain control mechanism, was assessed using the hindpaw administration of capsaicin. Immunohistochemical analyses demonstrated the selective expression of the DREADD construct in LC neurons after stereotactic injection. During the 1st week after TBI, when rats demonstrated hindlimb (HL) nociceptive sensitization, CNO administration provided transient anti-allodynia in DREADD-expressing rats but not in rats injected with control virus. Seven weeks after TBI we observed a complete loss of DNIC in response to capsaicin. However, CNO administration largely restored DNIC in TBI DREADD-expressing rats but not those injected with control virus. Unexpectedly, the effects of LC activation in the DREADD-expressing rats were blocked by the α-1 adrenergic receptor antagonist prazosin, but not the α-2 adrenergic receptor antagonist atipamezole. These results suggest that directly stimulating the LC after TBI can reduce both early and late manifestations of dysfunctional endogenous pain regulation. Clinical approaches to activating descending pain circuits may reduce suffering in those with pain after TBI.


Subject(s)
Brain Injuries, Traumatic , Chronic Pain , Designer Drugs , Adrenergic Antagonists , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Capsaicin , Designer Drugs/pharmacology , Locus Coeruleus , Nociception , Rats
8.
Sci Rep ; 12(1): 143, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996954

ABSTRACT

Blast exposure can injure brain by multiple mechanisms, and injury attributable to direct effects of the blast wave itself have been difficult to distinguish from that caused by rapid head displacement and other secondary processes. To resolve this issue, we used a rat model of blast exposure in which head movement was either strictly prevented or permitted in the lateral plane. Blast was found to produce axonal injury even with strict prevention of head movement. This axonal injury was restricted to the cerebellum, with the exception of injury in visual tracts secondary to ocular trauma. The cerebellar axonal injury was increased in rats in which blast-induced head movement was permitted, but the pattern of injury was unchanged. These findings support the contentions that blast per se, independent of head movement, is sufficient to induce axonal injury, and that axons in cerebellar white matter are particularly vulnerable to direct blast-induced injury.


Subject(s)
Axons/pathology , Blast Injuries/pathology , Brain Injuries, Traumatic/pathology , Cerebellum/pathology , Nerve Degeneration , White Matter/pathology , Animals , Axons/metabolism , Biomarkers/metabolism , Blast Injuries/metabolism , Brain Injuries, Traumatic/metabolism , Cerebellum/injuries , Cerebellum/metabolism , Disease Models, Animal , Head Movements , Male , Optic Nerve/metabolism , Optic Nerve/pathology , Optic Nerve Injuries/metabolism , Optic Nerve Injuries/pathology , Rats, Long-Evans , Visual Pathways/injuries , Visual Pathways/metabolism , Visual Pathways/pathology , White Matter/injuries , White Matter/metabolism
9.
Exp Neurol ; 333: 113428, 2020 11.
Article in English | MEDLINE | ID: mdl-32745472

ABSTRACT

Chronic pain is one of the most challenging and debilitating symptoms to manage after traumatic brain injury (TBI), yet the underlying mechanisms remain elusive. The disruption of normal endogenous pain control mechanisms has been linked to several forms of chronic pain and may play a role in pain after TBI. We hypothesized therefore that dysfunctional descending noradrenergic and serotonergic pain control circuits may contribute to the loss of diffuse noxious inhibitory control (DNIC), a critical endogenous pain control mechanism, weeks to months after TBI. For these studies, the rat lateral fluid percussion model of mild TBI was used along with a DNIC paradigm involving a capsaicin-conditioning stimulus. We observed sustained failure of the DNIC response up to 180-days post injury. We confirmed, that descending α2 adrenoceptor-mediated noradrenergic signaling was critical for endogenous pain inhibition in uninjured rats. However, augmenting descending noradrenergic signaling using reboxetine, a selective noradrenaline reuptake inhibitor, failed to restore DNIC after TBI. Furthermore, blocking serotonin-mediated descending signaling using selective spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine was also unsuccessful at restoring endogenous pain modulation after TBI. Unexpectedly, increasing descending serotonergic signaling using the selective serotonin reuptake inhibitor escitalopram and the serotonin-norepinephrine reuptake inhibitor duloxetine restored the DNIC response in TBI rats at both 49- and 180- days post injury. Consistent with these observations, spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine eliminated the effects of escitalopram. Intact α2 adrenoceptor signaling, however, was not required for the serotonin-mediated restoration of DNIC after TBI. These results suggest that TBI causes maladaptation of descending nociceptive signaling mechanisms and changes in the function of both adrenergic and serotonergic circuits. Such changes could predispose those with TBI to chronic pain.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Diffuse Noxious Inhibitory Control/drug effects , 5,7-Dihydroxytryptamine/pharmacology , Adrenergic Uptake Inhibitors/pharmacology , Animals , Brain Injuries, Traumatic/complications , Capsaicin/pharmacology , Chronic Pain/etiology , Duloxetine Hydrochloride/pharmacology , Male , Neural Pathways/physiopathology , Norepinephrine , Pain Measurement/drug effects , Rats , Rats, Sprague-Dawley , Reboxetine/pharmacology , Receptors, Adrenergic, alpha-2 , Serotonin , Serotonin Agents/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology
10.
Sci Rep ; 9(1): 19500, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31863005

ABSTRACT

High rates of acute and chronic pain are associated with traumatic brain injury (TBI), but mechanisms responsible for the association remain elusive. Recent data suggest dysregulated descending pain modulation circuitry could be involved. Based on these and other observations, we hypothesized that serotonin (5-HT)-dependent activation of spinal CXC Motif Chemokine Receptor 2 (CXCR2) may support TBI-related nociceptive sensitization in a mouse model of mild TBI (mTBI). We observed that systemic 5-HT depletion with p-chlorophenylalanine attenuated mechanical hypersensitivity seen after mTBI. Likewise, selective spinal 5-HT fiber depletion with 5,7-dihydroxytryptamine (5,7-DHT) reduced hypersensitivity after mTBI. Consistent with a role for spinal 5-HT3 serotonin receptors, intrathecal ondansetron administration after TBI dose-dependently attenuated nociceptive sensitization. Also, selective CXCR2 antagonist SCH527123 treatment attenuated mechanical hypersensitivity after mTBI. Furthermore, spinal CXCL1 and CXCL2 mRNA and protein levels were increased after mTBI as were GFAP and IBA-1 markers. Spinal 5,7-DHT application reduced both chemokine expression and glial activation. Our results suggest dual pathways for nociceptive sensitization after mTBI, direct 5-HT effect through 5-HT3 receptors and indirectly through upregulation of chemokine signaling. Designing novel clinical interventions against either the 5-HT3 mediated component or chemokine pathway may be beneficial in treating pain frequently seen in patients after mTBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Receptors, Serotonin, 5-HT1/metabolism , 5,7-Dihydroxytryptamine/pharmacology , Animals , Benzamides/pharmacology , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Chemokine CXCL2/genetics , Chemokine CXCL2/metabolism , Cyclobutanes/pharmacology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Fenclonine/pharmacology , Immunohistochemistry , Male , Mice , Ondansetron/therapeutic use , Real-Time Polymerase Chain Reaction , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/metabolism , Receptors, Serotonin, 5-HT3/metabolism
11.
Exp Neurol ; 320: 112976, 2019 10.
Article in English | MEDLINE | ID: mdl-31185197

ABSTRACT

Acute and persistent pain are recognized consequences of TBI that can enhance suffering and significantly impair rehabilitative efforts. Both experimental models and clinical studies suggest that TBI may result in an imbalance between descending pain facilitatory and inhibitory pathways. The aim of this study was to assess the role of enhanced descending serotonin-mediated pain facilitation in a rat TBI model using selective spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine (DHT). We observed significant hindpaw allodynia in TBI rats that was reduced after DHT but not vehicle treatment. Immunohistochemical studies demonstrated profound spinal serotonin depletion in DHT-treated rats. Furthermore, lumbar intrathecal administration of the 5-HT3 receptor antagonist ondansetron at 7 days post-injury (DPI), when hindpaw allodynia was maximal, also attenuated nociceptive sensitization. Additional immunohistochemical analyses of the lumbar spinal cord at 7 DPI revealed a robust bilateral microglial response in the superficial dorsal horns that was significantly reduced with DHT treatment. Furthermore, serotonin depletion also prevented the TBI-induced bilateral increase in c-Fos positive cells within the Rexed laminae I and II of the dorsal horns. These results indicate that in the weeks following TBI, pain may be responsive to 5-HT3 receptor antagonists or other measures which rebalance descending pain modulation.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Hyperalgesia/physiopathology , Pain/physiopathology , Spinal Cord/drug effects , Spinal Cord/metabolism , Animals , Brain Injuries, Traumatic/complications , Hyperalgesia/etiology , Male , Ondansetron/pharmacology , Pain/etiology , Rats , Rats, Sprague-Dawley , Serotonin 5-HT3 Receptor Antagonists/pharmacology
12.
Anesthesiology ; 130(2): 292-308, 2019 02.
Article in English | MEDLINE | ID: mdl-30418215

ABSTRACT

BACKGROUND: Emerging evidence suggests that opioid use immediately after surgery and trauma may worsen outcomes. In these studies, the authors aimed to determine whether morphine administered for a clinically relevant time period (7 days) in a tibia fracture orthopedic surgery model had adverse effects on postoperative recovery. METHODS: Mice were given morphine twice daily for 7 days after unilateral tibial fracture and intramedullary pin fixation to model orthopedic surgery and limb trauma. Mechanical allodynia, limb-specific weight bearing, gait changes, memory, and anxiety were measured after injury. In addition, spinal cord gene expression changes as well as glial activation were measured. Finally, the authors assessed the effects of a selective Toll-like receptor 4 antagonist, TAK-242, on nociceptive and functional changes after injury. RESULTS: Tibial fracture caused several weeks of mechanical nociceptive sensitization (F(1, 216) = 573.38, P < 0.001, fracture + vehicle vs. sham + vehicle, n = 10 per group), and this change was exacerbated by the perioperative administration of morphine (F(1, 216) = 71.61, P < 0.001, fracture + morphine vs. fracture + vehicle, n = 10 per group). In additional testing, injured limb weight bearing, gait, and object location memory were worse in morphine-treated fracture mice than in untreated fracture mice. Postfracture expression levels of several genes previously associated with opioid-induced hyperalgesia, including brain-derived neurotrophic factor and prodynorphin, were unchanged, but neuroinflammation involving Toll-like receptor 4 receptor-expressing microglia was observed (6.8 ± 1.5 [mean ± SD] cells per high-power field for fracture + vehicle vs. 12 ± 2.8 fracture + morphine, P < 0.001, n = 8 per /group). Treatment with a Toll-like receptor 4 antagonist TAK242 improved nociceptive sensitization for about 2 weeks in morphine-treated fracture mice (F(1, 198) = 73.36, P < 0.001, fracture + morphine + TAK242 vs. fracture + morphine, n = 10 per group). CONCLUSIONS: Morphine treatment beginning at the time of injury impairs nociceptive recovery and other outcomes. Measures preventing glial activation through Toll-like receptor 4 signaling may reduce the adverse consequences of postoperative opioid administration.


Subject(s)
Hyperalgesia/chemically induced , Microglia/drug effects , Morphine/pharmacology , Nociceptors/drug effects , Recovery of Function/drug effects , Tibial Fractures/physiopathology , Analgesics, Opioid/pharmacology , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Hyperalgesia/physiopathology , Immunoenzyme Techniques , Male , Mice , Mice, Inbred C57BL , Microglia/physiology , Microscopy, Fluorescence , Polymerase Chain Reaction , Recovery of Function/physiology
13.
Anesth Analg ; 129(5): 1414-1421, 2019 11.
Article in English | MEDLINE | ID: mdl-30044299

ABSTRACT

BACKGROUND: A major advancement in the field of analgesic pharmacology has been the development of G-protein-biased opioid agonists that display less respiratory depression than conventional drugs. It is uncertain, however, whether these new drugs cause less tolerance, hyperalgesia, and other maladaptations when administered repeatedly. METHODS: The archetypical µ-opioid receptor agonist morphine and, separately, the G-protein-biased µ-opioid receptor agonist oliceridine were administered to mice. These drugs were used in models of acute analgesia, analgesic tolerance, opioid-induced hyperalgesia, reward, and physical dependence. In addition, morphine and oliceridine were administered for 7 days after tibia fracture and pinning; mechanical allodynia and gait were followed for 3 weeks. Finally, the expression of toll-like receptor-4 and nacht domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NALP3) and interleukin-1ß mRNA were quantified in spinal tissue to measure surgical and drug effects on glia-related gene expression. RESULTS: We observed using the tail flick assay that oliceridine was a 4-fold more potent analgesic than morphine, but that oliceridine treatment caused less tolerance and opioid-induced hyperalgesia than morphine after 4 days of ascending-dose administration. Using similar analgesic doses, morphine caused reward behavior in the conditioned place preference assay while oliceridine did not. Physical dependence was, however, similar for the 2 drugs. Likewise, morphine appeared to more significantly impair the recovery of nociceptive sensitization and gait after tibial fracture and pinning than oliceridine. Furthermore, spinal cord toll-like receptor-4 levels 3 weeks after fracture were higher in fracture mice given morphine than those given oliceridine. CONCLUSIONS: Aside from reduced respiratory depression, G-protein-biased agonists such as oliceridine may reduce opioid maladaptations and enhance the quality of surgical recovery.


Subject(s)
Receptors, Opioid, mu/agonists , Spiro Compounds/pharmacology , Thiophenes/pharmacology , Analgesics, Opioid/pharmacology , Animals , Dose-Response Relationship, Drug , Ligands , Male , Mice , Mice, Inbred C57BL , Morphine/pharmacology , Pain, Postoperative/drug therapy , Tibial Fractures/physiopathology , Toll-Like Receptor 4/analysis
14.
J Pain ; 19(12): 1392-1405, 2018 12.
Article in English | MEDLINE | ID: mdl-29964216

ABSTRACT

Polytrauma commonly involves concussion (mild traumatic brain injury [mTBI]) and peripheral trauma including limb fractures. Interactions between mTBI and peripheral injuries are poorly understood, both leading to chronic pain and neurobehavioral impairments. To elucidate these interactions, a murine polytrauma model was developed. mTBI alone resulted in similar increased mechanical allodynia in male and female mice. Female fracture and polytrauma groups displayed greater increases in hind paw tactile hypersensitivity for weeks after injury than did the respective male groups. Capsaicin-evoked spontaneous pain behaviors were greater in fracture and polytrauma female mice compared with male mice. The mTBI and polytrauma male mice displayed significant deficits in spatial working memory. All fracture, mTBI, or polytrauma groups had deficits in object recognition memory. Only male mTBI or polytrauma mice showed greater agitation and increased risk-taking behavior in open field testing as well as zero maze tests. Additionally, impaired diffuse noxious inhibitory control was observed in all mTBI and polytrauma mice. The model presented offers clinically relevant features useful for studying persistent pain as well as cognitive and other behavioral changes after TBI including polytrauma. A better understanding of nervous system dysfunction after TBI and polytrauma might help prevent or reduce persistent pain and disability in these patients. PERSPECTIVE: The polytrauma model presented has relevant features of chronic pain and neurobehavioral impairments useful for studying mechanisms involved in their development. This model may have special value in understanding altered descending pain modulation after TBI and polytrauma.


Subject(s)
Brain Concussion/psychology , Cognition Disorders/etiology , Memory Disorders/etiology , Multiple Trauma/psychology , Tibial Fractures/psychology , Animals , Disease Models, Animal , Female , Locomotion , Male , Mice , Mice, Inbred C57BL , Risk-Taking
15.
J Neurotrauma ; 35(13): 1495-1509, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29373948

ABSTRACT

Chronic pain is a common consequence of traumatic brain injury (TBI) that can increase the suffering of a patient and pose a significant challenge to rehabilitative efforts. Unfortunately, the mechanisms linking TBI to pain are poorly understood, and specific treatments for TBI-related pain are still lacking. Our laboratory has shown that TBI causes pain sensitization in areas distant to the site of primary injury, and that changes in spinal gene expression may underlie this sensitization. The aim of this study was to examine the roles that pain modulatory pathways descending from the brainstem play in pain after TBI. Deficiencies in one type of descending inhibition, diffuse noxious inhibitory control (DNIC), have been suggested to be responsible for the development of chronic pain by allowing excess and uncontrolled afferent nociceptive inputs. Here we expand our knowledge of pain after TBI in two ways: (1) by outlining the neuropathology in pain-related centers of the brain and spinal cord involved in DNIC using the rat lateral fluid percussion (LFP) model of TBI, and (2) by evaluating the effects of a potent histone acetyl transferase inhibitor, anacardic acid (AA), on LFP-induced pain behaviors and neuropathology when administered for several days after TBI. The results revealed that TBI induces transient mechanical allodynia and a chronic persistent loss of DNIC. Further, while short-term AA treatment can block acute nociceptive sensitization and some early neuropathological changes, this treatment neither prevented the loss of DNIC nor did it alter long-term neuropathological changes in the brain or spinal cord.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Brain Stem/physiopathology , Chronic Pain/physiopathology , Hyperalgesia/physiopathology , Spinal Cord/physiopathology , Animals , Brain Injuries, Traumatic/complications , Chronic Pain/etiology , Male , Rats , Rats, Long-Evans , Signal Transduction/physiology
16.
J Neurotrauma ; 35(7): 918-929, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29285982

ABSTRACT

The inflammation response induced by brain trauma can impair recovery. This response requires several hours to develop fully and thus provides a clinically relevant therapeutic window of opportunity. Poly(ADP-ribose) polymerase inhibitors suppress inflammatory responses, including brain microglial activation. We evaluated delayed treatment with veliparib, a poly(ADP-ribose) polymerase inhibitor, currently in clinical trials as a cancer therapeutic, in rats and pigs subjected to controlled cortical impact (CCI). In rats, CCI induced a robust inflammatory response at the lesion margins, scattered cell death in the dentate gyrus, and a delayed, progressive loss of corpus callosum axons. Pre-determined measures of cognitive and motor function showed evidence of attentional deficits that resolved after three weeks and motor deficits that recovered only partially over eight weeks. Veliparib was administered beginning 2 or 24 h after CCI and continued for up to 12 days. Veliparib suppressed CCI-induced microglial activation at doses of 3 mg/kg or higher and reduced reactive astrocytosis and cell death in the dentate gyrus, but had no significant effect on delayed axonal loss or functional recovery. In pigs, CCI similarly induced a perilesional microglial activation that was attenuated by veliparib. CCI in the pig did not, however, induce detectable persisting cognitive or motor impairment. Our results showed veliparib suppression of CCI-induced microglial activation with a delay-to-treatment interval of at least 24 h in both rats and pigs, but with no associated functional improvement. The lack of improvement in long-term recovery underscores the complexities in translating anti-inflammatory effects to clinically relevant outcomes.

17.
Pain Med ; 19(7): 1315-1333, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29025157

ABSTRACT

Background: Traumatic brain injury refers to a broad range of neurological, cognitive, and emotional factors that result from the application of an external force to the head. Individuals recovering from traumatic brain injury will frequently experience acute and chronic pain. Objective: The objective of this paper is to discuss the pathophysiological changes resulting from traumatic brain injury and how these may be involved in the development and persistence of pain after injury. Methods: We based our review on articles retrieved from the MEDLINE database of references and abstracts on life sciences and biomedical topics (1966 to present) using the search engine PubMed (United States National Library of Medicine). The published literature focused on traumatic brain injury and pain. Conclusions: This review presents evidence that pain is common after traumatic brain injury. However, while there are many potential mechanisms explaining this problem such as neuroinflammation, excitotoxicity, and axonal degeneration, we have no clear understanding of which of them contribute in individual patients. The authors highlight the priorities for research that will expand our knowledge and that may lead to the rational design of therapies that both reduce pain and provide optimal overall outcomes after traumatic brain injury.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Brain/physiopathology , Chronic Pain/physiopathology , Pain Measurement/methods , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnosis , Chronic Pain/diagnosis , Chronic Pain/etiology , Humans , Pain Management/methods , Pyramidal Tracts/physiopathology
18.
IBRO Rep ; 2: 14-23, 2017 Jun.
Article in English | MEDLINE | ID: mdl-30135929

ABSTRACT

Chronic pain after traumatic brain injury (TBI) is very common, but the mechanisms linking TBI to pain and the pain-related interactions of TBI with peripheral injuries are poorly understood. In these studies we pursued the hypothesis that TBI pain sensitization is associated with histone acetylation in the rat lateral fluid percussion model. Some animals received hindpaw incisions in addition to TBI to mimic polytrauma. Neuropathological analysis of brain tissue from sham and TBI animals revealed evidence of bleeding, breakdown of the blood brain barrier, in the cortex, hippocampus, thalamus and other structures related to pain signal processing. Mechanical allodynia was measured in these animals for up to eight weeks post-injury. Inhibitors of histone acetyltransferase (HAT) and histone deacetylase (HDAC) were used to probe the role of histone acetylation in such pain processing. We followed serum markers including glial fibrillary acidic protein (GFAP), neuron-specific enolase 2 (NSE) myelin basic protein (MBP) and S100ß to gauge TBI injury severity. Our results showed that TBI caused mechanical allodynia in the hindpaws of the rats lasting several weeks. Hindpaws contralateral to TBI showed more rapid and profound sensitization than ipsilateral hindpaws. The inhibition of HAT using curcumin 50 mg/kg s.c reduced mechanical sensitization while the HDAC inhibitor suberoylanilide hydroxamic acid 50 mg/kg i.p. prolonged sensitization in the TBI rats. Immunohistochemical analyses of spinal cord tissue localized changes in the level of acetylation of the H3K9 histone mark to dorsal horn neurons. Taken together, these findings demonstrate that TBI induces sustained nociceptive sensitization, and changes in spinal neuronal histone proteins may play an important role.

19.
eNeuro ; 2(5)2015.
Article in English | MEDLINE | ID: mdl-26668821

ABSTRACT

Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity.


Subject(s)
Motor Neurons/metabolism , Neuronal Plasticity/physiology , Receptors, AMPA/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Synapses/metabolism , Animals , Blotting, Western , Cell Death/physiology , Disease Models, Animal , Hindlimb/physiopathology , Immunohistochemistry , Male , Microscopy, Confocal , Motor Neurons/drug effects , Motor Neurons/pathology , Neuronal Plasticity/drug effects , Nociception/physiology , Phosphorylation , Protein Transport , Rats, Sprague-Dawley , Receptors, AMPA/antagonists & inhibitors , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Synapses/drug effects , Synapses/pathology
20.
Nat Commun ; 6: 8581, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26466022

ABSTRACT

Data-driven discovery in complex neurological disorders has potential to extract meaningful syndromic knowledge from large, heterogeneous data sets to enhance potential for precision medicine. Here we describe the application of topological data analysis (TDA) for data-driven discovery in preclinical traumatic brain injury (TBI) and spinal cord injury (SCI) data sets mined from the Visualized Syndromic Information and Outcomes for Neurotrauma-SCI (VISION-SCI) repository. Through direct visualization of inter-related histopathological, functional and health outcomes, TDA detected novel patterns across the syndromic network, uncovering interactions between SCI and co-occurring TBI, as well as detrimental drug effects in unpublished multicentre preclinical drug trial data in SCI. TDA also revealed that perioperative hypertension predicted long-term recovery better than any tested drug after thoracic SCI in rats. TDA-based data-driven discovery has great potential application for decision-support for basic research and clinical problems such as outcome assessment, neurocritical care, treatment planning and rapid, precision-diagnosis.


Subject(s)
Brain Injuries , Computational Biology/methods , Disease Models, Animal , Spinal Cord Injuries , Animals , Data Interpretation, Statistical , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...