Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 265: 1-7, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28115069

ABSTRACT

Chronic exposure to n-hexane can induce serious nerve system impairments without effective preventive medicines. Diallyl trisulfide (DATS) is a garlic-derived organosulfur compound, which has been demonstrated to have many beneficial effects. The current study was designed to evaluate whether DATS could restrain n-hexane induced neurotoxicity in rats and to explore the underlying mechanisms. Rats were treated with n-hexane (3 g/kg, p.o.) and different doses of DATS (10, 20 and 30 mg/kg, p.o.) for 8 weeks. Behavioral assessment showed that DATS could inhibit n-hexane induced neurotoxicity, demonstrated by the improvement of the grip strength and decline of gait scores. Toxicokinetic analysis revealed that the Cmax and AUC0-t of 2,5-hexanedione (product of n-hexane metabolic activation) and 2,5-hexanedione protein adducts in serum were significantly declined in DATS-treated rats, and the levels of pyrrole adducts in tissues were significantly reduced. Furthermore, DATS activated CYP1A1 and inhibited n-hexane induced increased expression and activity of CYP2E1 and CYP2B1. Collectively, these findings indicated that DATS protected the rats from n-hexane-induced neurotoxicity, which might be attributed to the modulation of P450 enzymes by DATS.


Subject(s)
Allyl Compounds/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Hexanes/toxicity , Peripheral Nervous System Diseases/prevention & control , Sulfides/pharmacology , Animals , Hexanes/pharmacokinetics , Male , Microsomes, Liver/enzymology , Peripheral Nervous System Diseases/chemically induced , Rats , Rats, Wistar , Tissue Distribution
2.
Neurochem Res ; 42(2): 583-594, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27900598

ABSTRACT

Occupational exposure to carbon disulfide (CS2) exhibits central nervous systems toxicity. But the mechanism is unclear. The present study was designed to investigate the relationship between the CNS damage and cognitive dysfunction caused by CS2, and eventually reveal the possible oxidative-related mechanism of hippocampus pathological changes in CS2 exposed rats. Male Wistar rats were administrated with CS2 at dosage of 200, 400 and 600 mg/kg for consecutive 20 days, respectively. Cognitive performances were evaluated by Morris water maze tests. Thionin and immunohistochemical analysis were used to investigate the hippocampal neuron damage, and the expression of apoptosis related proteins (cleaved-caspase 3, Bax and Bcl-2) were detected to explore the possible mechanisms of neuronal loss. Oxidative stress parameters were checked by commercial assay kits. Rats exposed to CS2 displayed cognitive dysfunction manifested as decreased spatial learning ability and memory lesion. Pathological changes and significant neuron loss were observed in hippocampus, especially in CA1 and CA3 sub-regions. Mitochondria-dependent apoptosis pathway was implicated in the CS2-induced neuronal loss which was demonstrated by the up-regulation of cleaved-caspase 3 and Bax accompanied with down-regulation of Bcl-2. Furthermore, extensive oxidative stress induced by CS2 was also revealed by the measurement of ROS, RNS, MDA, GSH&GSSG and antioxidant enzymes (CAT, T-SOD, and GSH-Px). Our study suggested that oxidative stress mediated hippocampal neuron apoptosis might play an important role in CS2 induced CNS damage and cognitive dysfunction.


Subject(s)
Apoptosis/physiology , Carbon Disulfide/toxicity , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Neurons/metabolism , Oxidative Stress/physiology , Animals , Apoptosis/drug effects , Cognitive Dysfunction/chemically induced , Dose-Response Relationship, Drug , Hippocampus/drug effects , Male , Neurons/drug effects , Oxidative Stress/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...