Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(5): 2231-2241, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38348910

ABSTRACT

Chemical probing technologies enable high-throughput examination of diverse structural features of RNA, including local nucleotide flexibility, RNA secondary structure, protein and ligand binding, through-space interaction networks, and multistate structural ensembles. Deep understanding of RNA structure-function relationships typically requires evaluating a system under structure- and function-altering conditions, linking these data with additional information, and visualizing multilayered relationships. Current platforms lack the broad accessibility, flexibility and efficiency needed to iterate on integrative analyses of these diverse, complex data. Here, we share the RNA visualization and graphical analysis toolset RNAvigate, a straightforward and flexible Python library that automatically parses 21 standard file formats (primary sequence annotations, per- and internucleotide data, and secondary and tertiary structures) and outputs 18 plot types. RNAvigate enables efficient exploration of nuanced relationships between multiple layers of RNA structure information and across multiple experimental conditions. Compatibility with Jupyter notebooks enables nonburdensome, reproducible, transparent and organized sharing of multistep analyses and data visualization strategies. RNAvigate simplifies and accelerates discovery and characterization of RNA-centric functions in biology.


Subject(s)
RNA , Software , RNA/genetics , RNA/chemistry , Nucleic Acid Conformation , Sequence Analysis, RNA
2.
Nature ; 621(7978): 423-430, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674078

ABSTRACT

Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites1-4. However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity in Arabidopsis, we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming.


Subject(s)
Codon, Initiator , Nucleic Acid Conformation , RNA, Double-Stranded , RNA, Messenger , Humans , Arabidopsis/genetics , Arabidopsis/immunology , Codon, Initiator/genetics , Innate Immunity Recognition , Open Reading Frames/genetics , Protein Biosynthesis/genetics , Protein Biosynthesis/immunology , Ribosomes/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Messenger/genetics , Transcriptome , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Deep Learning
3.
bioRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37162917

ABSTRACT

Chemical probing technologies enable high-throughput examination of diverse structural features of RNA including local nucleotide flexibility, RNA secondary structure, protein- and ligand-binding, through-space interaction networks, and multi-state structural ensembles. Performing these experiments, by themselves, does not directly lead to biological insight. Instead, deep understanding of RNA structure-function relationships typically requires evaluating a system under structure- and function-altering conditions, linking these data with additional information, and visualizing multi-layered relationships. Current platforms lack the broad accessibility, flexibility, and efficiency needed to iterate on integrative analyses of these diverse, complex data. Here, we share the RNA visualization and graphical analysis toolset RNAvigate, a straightforward and flexible Python library. RNAvigate currently automatically parses twenty-one standard file formats (primary sequence annotations, per- and internucleotide data, and secondary and tertiary structures) and outputs eighteen plot types. These features enable efficient exploration of nuanced relationships between chemical probing data, RNA structure, and motif annotations across multiple experimental samples. Compatibility with Jupyter Notebooks enables non-burdensome, reproducible, transparent and organized sharing of multi-step analyses and data visualization strategies. RNAvigate simplifies examination of multi-layered RNA structure information and accelerates discovery and characterization of RNA-centric functions in biology.

4.
Cell Rep ; 38(7): 110361, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172143

ABSTRACT

Many lncRNAs have been discovered using transcriptomic data; however, it is unclear what fraction of lncRNAs is functional and what structural properties affect their phenotype. MUNC lncRNA (also known as DRReRNA) acts as an enhancer RNA for the Myod1 gene in cis and stimulates the expression of other promyogenic genes in trans by recruiting the cohesin complex. Here, experimental probing of the RNA structure revealed that MUNC contains multiple structural domains not detected by prediction algorithms in the absence of experimental information. We show that these specific and structurally distinct domains are required for induction of promyogenic genes, for binding genomic sites and gene expression regulation, and for binding the cohesin complex. Myod1 induction and cohesin interaction comprise only a subset of MUNC phenotype. Our study reveals unexpectedly complex, structure-driven functions for the MUNC lncRNA and emphasizes the importance of experimentally determined structures for understanding structure-function relationships in lncRNAs.


Subject(s)
Muscle Development/genetics , RNA, Long Noncoding/metabolism , Transcription, Genetic , Animals , Base Sequence , Cell Differentiation/genetics , Cell Line , Female , Genome , Mice , Muscle Fibers, Skeletal/metabolism , Nucleic Acid Conformation , Phenotype , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Long Noncoding/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Deletion
5.
Proc Natl Acad Sci U S A ; 116(49): 24574-24582, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31744869

ABSTRACT

RNA structure and dynamics are critical to biological function. However, strategies for determining RNA structure in vivo are limited, with established chemical probing and newer duplex detection methods each having deficiencies. Here we convert the common reagent dimethyl sulfate into a useful probe of all 4 RNA nucleotides. Building on this advance, we introduce PAIR-MaP, which uses single-molecule correlated chemical probing to directly detect base-pairing interactions in cells. PAIR-MaP has superior resolution compared to alternative experiments, can resolve multiple sets of pairing interactions for structurally dynamic RNAs, and enables highly accurate structure modeling, including of RNAs containing multiple pseudoknots and extensively bound by proteins. Application of PAIR-MaP to human RNase MRP and 2 bacterial messenger RNA 5' untranslated regions reveals functionally important and complex structures undetected by prior analyses. PAIR-MaP is a powerful, experimentally concise, and broadly applicable strategy for directly visualizing RNA base pairs and dynamics in cells.


Subject(s)
RNA/chemistry , Sulfuric Acid Esters/chemistry , 5' Untranslated Regions , Base Pairing , Cell Survival , Endoribonucleases/genetics , Escherichia coli/genetics , Humans , Jurkat Cells , Models, Molecular , Molecular Imaging/methods , Molecular Probe Techniques , Molecular Probes/chemistry , Nucleic Acid Conformation , Nucleotides/chemistry , RNA/genetics , RNA, Long Noncoding/chemistry , RNA, Messenger/chemistry , Regulatory Sequences, Ribonucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...