Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Bull ; 245(1): 33-44, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38820289

ABSTRACT

AbstractSea stars are a major component of the megabenthos in most marine habitats, including those within the deep sea. Being radially symmetric, sea stars have sensory structures that are evenly distributed along the arms, with a compound eye located on each arm tip of most examined species. Surprisingly, eyes with a spatial resolution that rivals the highest acuity known among sea stars so far were recently found in Novodinia americana, a member of the deep-sea sea star order Brisingida. Here, we examined 21 species across 11 brisingid genera for the presence of eyes; where eyes were present, we used morphological characteristics to evaluate spatial resolution and sensitivity. This study found that eyes were present within 43% of the examined species. These brisingid eyes were relatively large compared to those of other deep-sea sea stars, with a high number of densely packed ommatidia. One of the examined species, Brisingaster robillardi, had more than 600 ommatidia per eye, which is the highest number of ommatidia found in any sea star eye so far. Combined, the results indicate that brisingid eyes are adapted for spatial resolution over sensitivity. Together with results showing that many brisingids are bioluminescent, this relatively high spatial resolution suggests that the group may use their eyes to support visually guided intraspecific communication based on bioluminescent signals. Phylogenetic analysis indicated that the common ancestor of brisingids had eyes (P = 0.72) and that eyes were lost once within the clade.


Subject(s)
Eye , Starfish , Vision, Ocular , Animals , Vision, Ocular/physiology , Starfish/physiology , Starfish/anatomy & histology , Eye/anatomy & histology , Luminescence , Phylogeny
2.
J Exp Biol ; 225(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-35796292

ABSTRACT

All species within the conch snail family Strombidae possess large camera-type eyes that are surprisingly well-developed compared with those found in most other gastropods. Although these eyes are known to be structurally complex, very little research on their visual function has been conducted. Here, we use isoluminant expanding visual stimuli to measure the spatial resolution and contrast sensitivity of a strombid, Conomurex luhuanus. Using these stimuli, we show that this species responds to objects as small as 1.06 deg in its visual field. We also show that C. luhuanus responds to Michelson contrasts of 0.07, a low contrast sensitivity between object and background. The defensive withdrawal response elicited by visual stimuli of such small angular size and low contrast suggests that conch snails may use spatial vision for the early detection of potential predators. We support these findings with morphological estimations of spatial resolution of 1.04 deg. These anatomical data therefore agree with the behavioural measures and highlight the benefits of integrating behavioural and morphological approaches in animal vision studies. Using contemporary imaging techniques [serial block-face scanning electron microscopy (SBF-SEM), in conjunction with transmission electron microscopy (TEM)], we found that C. luhuanus have more complex retinas, in terms of cell type diversity, than expected based on previous studies of the group using TEM alone. We find the C. luhuanus retina comprises six cell types, including a newly identified ganglion cell and accessory photoreceptor, rather than the previously described four cell types.


Subject(s)
Gastropoda , Animals , Contrast Sensitivity , Photoreceptor Cells , Retina/physiology , Visual Fields
3.
Mol Phylogenet Evol ; 158: 107081, 2021 05.
Article in English | MEDLINE | ID: mdl-33482382

ABSTRACT

Members of the gastropod superfamily Stromboidea (Littorinimorpha) are characterised by their elaborate shell morphologies, distinctive mode of locomotion, and often large and colourful eyes. This iconic group comprises over 130 species, including many large and charismatic species. The family Strombidae is of particular interest, largely due to its commercial importance and wide distribution in tropical and subtropical waters. Although a few strombid mitochondrial genomes have been sequenced, data for the other four Recent families in Stromboidea are lacking. In this study we report seven new stromboid mitogenomes obtained from transcriptomic and genomic data, with taxonomic representation from each Recent stromboid family, including the first mitogenomes for Aporrhaidae, Rostellariidae, Seraphsidae and Struthiolariidae. We also report a new mitogenome for the family Xenophoridae. We use these data, along with published sequences, to investigate the relationships among these and other caenogastropod groups. All analyses undertaken in this study support monophyly of Stromboidea as redefined here to include Xenophoridae, a finding consistent with morphological and behavioural data. Consistent with previous morphological and molecular analyses, including those based on mitogenomes, monophyly of Hypsogastropoda is confirmed but monophyly of Littorinimorpha is again rejected.


Subject(s)
Gastropoda/genetics , Genome, Mitochondrial , Mitochondria/genetics , Animals , Gastropoda/classification , Mitochondria/classification , Mitochondrial Proteins/classification , Mitochondrial Proteins/genetics , Nucleic Acid Conformation , Phylogeny , RNA, Ribosomal, 18S/classification , RNA, Ribosomal, 18S/genetics , RNA, Transfer/chemistry
4.
Proc Biol Sci ; 287(1933): 20201521, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32811316

ABSTRACT

Of all hypotheses advanced for why zebras have stripes, avoidance of biting fly attack receives by far the most support, yet the mechanisms by which stripes thwart landings are not yet understood. A logical and popular hypothesis is that stripes interfere with optic flow patterns needed by flying insects to execute controlled landings. This could occur through disrupting the radial symmetry of optic flow via the aperture effect (i.e. generation of false motion cues by straight edges), or through spatio-temporal aliasing (i.e. misregistration of repeated features) of evenly spaced stripes. By recording and reconstructing tabanid fly behaviour around horses wearing differently patterned rugs, we could tease out these hypotheses using realistic target stimuli. We found that flies avoided landing on, flew faster near, and did not approach as close to striped and checked rugs compared to grey. Our observations that flies avoided checked patterns in a similar way to stripes refutes the hypothesis that stripes disrupt optic flow via the aperture effect, which critically demands parallel striped patterns. Our data narrow the menu of fly-equid visual interactions that form the basis for the extraordinary colouration of zebras.


Subject(s)
Diptera , Pigmentation , Animals , Color , Cues , Flight, Animal , Insect Bites and Stings
SELECTION OF CITATIONS
SEARCH DETAIL
...