Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511537

ABSTRACT

The endocannabinoid system (eCS) is widely distributed in mammalian tissues and it is classically formed by cannabinoid receptors, endogenous bioactive lipids and its synthesis and degradation enzymes. Due to the modulatory role of eCS in synaptic activity in the Central Nervous System (CNS), phytocannabinoids have been increasingly used for the treatment of neurological disorders, even though little is known in terms of the long-term effect of these treatments on CNS development, mainly in the timeframe that comprises childhood and adolescence. Furthermore, an increased number of clinical trials using full-spectrum Cannabis extracts has been seen, rather than the isolated form of phytocannabinoids, when exploring the therapeutical benefits of the Cannabis plant. Thus, this study aims to evaluate the effect of cannabidiol (CBD)-enriched Cannabis extract on synaptic components in the hippocampus of rats from adolescence to early adulthood (postnatal day 45 to 60). Oral treatment of healthy male Wistar rats with a CBD-enriched Cannabis extract (3 mg/kg/day CBD) during 15 days did not affect food intake and water balance. There was also no negative impact on locomotor behaviour and cognitive performance. However, the hippocampal protein levels of GluA1 and GFAP were reduced in animals treated with the extract, whilst PSD95 levels were increased, which suggests rearrangement of glutamatergic synapses and modulation of astrocytic features. Microglial complexity was reduced in CA1 and CA3 regions, but no alterations in their phagocytic activity have been identified by Iba-1 and LAMP2 co-localization. Collectively, our data suggest that CBD-enriched Cannabis treatment may be safe and well-tolerated in healthy subjects, besides acting as a neuroprotective agent against hippocampal alterations related to the pathogenesis of excitatory and astrogliosis-mediated disorders in CNS.


Subject(s)
Cannabidiol , Cannabis , Hallucinogens , Rats , Animals , Cannabidiol/therapeutic use , Cannabis/metabolism , Rats, Wistar , Endocannabinoids , Cannabinoid Receptor Agonists , Plant Extracts/therapeutic use , Hippocampus/metabolism , Mammals/metabolism
2.
Front Cell Neurosci ; 17: 1134130, 2023.
Article in English | MEDLINE | ID: mdl-37138770

ABSTRACT

The endocannabinoid system (ECS) refers to a complex cell-signaling system highly conserved among species formed by numerous receptors, lipid mediators (endocannabinoids) and synthetic and degradative enzymes. It is widely distributed throughout the body including the CNS, where it participates in synaptic signaling, plasticity and neurodevelopment. Besides, the olfactory ensheathing glia (OEG) present in the olfactory system is also known to play an important role in the promotion of axonal growth and/or myelination. Therefore, both OEG and the ECS promote neurogenesis and oligodendrogenesis in the CNS. Here, we investigated if the ECS is expressed in cultured OEG, by assessing the main markers of the ECS through immunofluorescence, western blotting and qRT-PCR and quantifying the content of endocannabinoids in the conditioned medium of these cells. After that, we investigated whether the production and release of endocannabinoids regulate the differentiation of oligodendrocytes co-cultured with hippocampal neurons, through Sholl analysis in oligodendrocytes expressing O4 and MBP markers. Additionally, we evaluated through western blotting the modulation of downstream pathways such as PI3K/Akt/mTOR and ERK/MAPK, being known to be involved in the proliferation and differentiation of oligodendrocytes and activated by CB1, which is the major endocannabinoid responsive receptor in the brain. Our data show that OEG expresses key genes of the ECS, including the CB1 receptor, FAAH and MAGL. Besides, we were able to identify AEA, 2-AG and AEA related mediators palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), in the conditioned medium of OEG cultures. These cultures were also treated with URB597 10-9 M, a FAAH selective inhibitor, or JZL184 10-9 M, a MAGL selective inhibitor, which led to the increase in the concentrations of OEA and 2-AG in the conditioned medium. Moreover, we found that the addition of OEG conditioned medium (OEGCM) enhanced the complexity of oligodendrocyte process branching in hippocampal mixed cell cultures and that this effect was inhibited by AM251 10-6 M, a CB1 receptor antagonist. However, treatment with the conditioned medium enriched with OEA or 2-AG did not alter the process branching complexity of premyelinating oligodendrocytes, while decreased the branching complexity in mature oligodendrocytes. We also observed no change in the phosphorylation of Akt and ERK 44/42 in any of the conditions used. In conclusion, our data show that the ECS modulates the number and maturation of oligodendrocytes in hippocampal mixed cell cultures.

3.
eNeuro ; 10(2)2023 02.
Article in English | MEDLINE | ID: mdl-36697257

ABSTRACT

Major depressive disorder (MDD) is a major cause of disability in adults. MDD is both a comorbidity and a risk factor for Alzheimer's disease (AD), and regular physical exercise has been associated with reduced incidence and severity of MDD and AD. Irisin is an exercise-induced myokine derived from proteolytic processing of fibronectin type III domain-containing protein 5 (FNDC5). FNDC5/irisin is reduced in the brains of AD patients and mouse models. However, whether brain FNDC5/irisin expression is altered in depression remains elusive. Here, we investigate changes in fndc5 expression in postmortem brain tissue from MDD individuals and mouse models of depression. We found decreased fndc5 expression in the MDD prefrontal cortex, both with and without psychotic traits. We further demonstrate that the induction of depressive-like behavior in male mice by lipopolysaccharide decreased fndc5 expression in the frontal cortex, but not in the hippocampus. Conversely, chronic corticosterone administration increased fndc5 expression in the frontal cortex, but not in the hippocampus. Social isolation in mice did not result in altered fndc5 expression in either frontal cortex or hippocampus. Finally, fluoxetine, but not other antidepressants, increased fndc5 gene expression in the mouse frontal cortex. Results indicate a region-specific modulation of fndc5 in depressive-like behavior and by antidepressant in mice. Our finding of decreased prefrontal cortex fndc5 expression in MDD individuals differs from results in mice, highlighting the importance of carefully interpreting observations in mice. The reduction in fndc5 mRNA suggests that decreased central FNDC5/irisin could comprise a shared pathologic mechanism between MDD and AD.


Subject(s)
Depressive Disorder, Major , Male , Mice , Animals , Depressive Disorder, Major/metabolism , Depression , Fibronectins/genetics , Fibronectins/metabolism , Brain/metabolism , Transcription Factors/metabolism , Disease Models, Animal , Muscle, Skeletal/metabolism
4.
Transl Psychiatry ; 12(1): 439, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36216800

ABSTRACT

Age increases the risk for cognitive impairment and is the single major risk factor for Alzheimer's disease (AD), the most prevalent form of dementia in the elderly. The pathophysiological processes triggered by aging that render the brain vulnerable to dementia involve, at least in part, changes in inflammatory mediators. Here we show that lipoxin A4 (LXA4), a lipid mediator of inflammation resolution known to stimulate endocannabinoid signaling in the brain, is reduced in the aging central nervous system. We demonstrate that genetic suppression of 5-lipoxygenase (5-LOX), the enzyme mediating LXA4 synthesis, promotes learning impairment in mice. Conversely, administration of exogenous LXA4 attenuated cytokine production and memory loss induced by inflammation in mice. We further show that cerebrospinal fluid LXA4 is reduced in patients with dementia and positively associated with cognitive performance, brain-derived neurotrophic factor (BDNF), and AD-linked amyloid-ß. Our findings suggest that reduced LXA4 levels may lead to vulnerability to age-related cognitive disorders and that promoting LXA4 signaling may comprise an effective strategy to prevent early cognitive decline in AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lipoxins , Aged , Alzheimer Disease/genetics , Animals , Arachidonate 5-Lipoxygenase/genetics , Brain-Derived Neurotrophic Factor , Cognition , Cytokines , Endocannabinoids , Humans , Inflammation , Inflammation Mediators , Lipoxins/metabolism , Mice
5.
Neuropharmacology ; 197: 108744, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34363812

ABSTRACT

Endocrine mechanisms have been largely associated with metabolic control and tissue cross talk in mammals. Classically, myokines comprise a class of signaling proteins released in the bloodstream by the skeletal muscle, which mediate physiological and metabolic responses in several tissues, including the brain. Recent exciting evidence suggests that myokines (e.g. cathepsin B, FNDC5/irisin, interleukin-6) act to control brain functions, including learning, memory, and mood, and may mediate the beneficial actions of physical exercise in the brain. However, the intricate mechanisms connecting peripherally released molecules to brain function are not fully understood. Accumulating findings further indicates that impaired skeletal muscle homeostasis impacts brain metabolism and physiology. Here we review recent findings that suggest that muscle-borne signals are essential for brain physiology and discuss perspectives on how these signals vary in response to exercise or muscle diseases. Understanding the complex interactions between skeletal muscle and brain may result in more effective therapeutic strategies to expand healthspan and to prevent brain disease. This article is part of the special Issue on 'Cross Talk between Periphery and the Brain'.


Subject(s)
Brain/physiology , Muscle, Skeletal/physiology , Animals , Brain/metabolism , Brain Chemistry/physiology , Humans , Muscle, Skeletal/innervation , Signal Transduction/physiology
6.
Biochim Biophys Acta ; 1840(6): 1902-12, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24361617

ABSTRACT

BACKGROUND: Our previous study demonstrated that essential fatty acid (EFA) dietary restriction over two generations induced midbrain dopaminergic cell loss and oxidative stress in the substantia nigra (SN) but not in the striatum of young rats. In the present study we hypothesized that omega-3 deficiency until adulthood would reduce striatum's resilience, increase nitric oxide (NO) levels and the number of BDNF-expressing neurons, both potential mechanisms involved in SN neurodegeneration. METHODS: Second generation rats were raised from gestation on control or EFA-restricted diets until young or adulthood. Lipoperoxidation, NO content, total superoxide dismutase (t-SOD) and catalase enzymatic activities were assessed in the SN and striatum. The number of tyrosine hydroxylase (TH)- and BDNF-expressing neurons was analyzed in the SN. RESULTS: Increased NO levels were observed in the striatum of both young and adult EFA-deficient animals but not in the SN, despite a similar omega-3 depletion (~65%) in these regions. Increased lipoperoxidation and decreased catalase activity were found in both regions, while lower tSOD activity was observed only in the striatum. Fewer TH- (~40%) and BDNF-positive cells (~20%) were detected at the SN compared to the control. CONCLUSION: The present findings demonstrate a differential effect of omega-3 deficiency on NO production in the rat's nigrostriatal system. Prolonging omega-3 depletion until adulthood impaired striatum's anti-oxidant resources and BDNF distribution in the SN, worsening dopaminergic cell degeneration. GENERAL SIGNIFICANCE: Omega-3 deficiency can reduce the nigrostriatal system's ability to maintain homeostasis under oxidative conditions, which may enhance the risk of Parkinson's disease.


Subject(s)
Brain-Derived Neurotrophic Factor/physiology , Fatty Acids, Omega-3/physiology , Nitric Oxide/biosynthesis , Parkinson Disease/etiology , Substantia Nigra/physiology , Animals , Brain-Derived Neurotrophic Factor/analysis , Catalase/metabolism , Female , Lipid Peroxidation , Male , Oxidative Stress , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Tyrosine 3-Monooxygenase/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...