Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(50): 20690-20698, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36475641

ABSTRACT

Reaction of [Ru(C6H4PPh2)2(Ph2PC6H4AlMe(THF))H] with CO results in clean conversion to the Ru-Al heterobimetallic complex [Ru(AlMePhos)(CO)3] (1), where AlMePhos is the novel P-Al(Me)-P pincer ligand (o-Ph2PC6H4)2AlMe. Under photolytic conditions, 1 reacts with H2 to give [Ru(AlMePhos)(CO)2(µ-H)H] (2) that is characterized by multinuclear NMR and IR spectroscopies. DFT calculations indicate that 2 features one terminal and one bridging hydride that are respectively anti and syn to the AlMe group. Calculations also define a mechanism for H2 addition to 1 and predict facile hydride exchange in 2 that is also observed experimentally. Reaction of 1 with B(C6F5)3 results in Me abstraction to form the ion pair [Ru(AlPhos)(CO)3][MeB(C6F5)3] (4) featuring a cationic [(o-Ph2PC6H4)2Al]+ ligand, [AlPhos]+. The Ru-Al distance in 4 (2.5334(16) Å) is significantly shorter than that in 1 (2.6578(6) Å), consistent with an enhanced Lewis acidity of the [AlPhos]+ ligand. This is corroborated by a blue shift in both the observed and computed νCO stretching frequencies upon Me abstraction. Electronic structure analyses (QTAIM and EDA-ETS) comparing 1, 4, and the previously reported [Ru(ZnPhos)(CO)3] analogue (ZnPhos = (o-Ph2PC6H4)2Zn) indicate that the Lewis acidity of these pincer ligands increases along the series ZnPhos < AlMePhos < [AlPhos]+.

2.
Organometallics ; 41(19): 2716-2730, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36249448

ABSTRACT

Treatment of [Ru(PPh3)(C6H4PPh2)2H][Li(THF)2] with AlMe2Cl and SnMe3Cl leads to elimination of LiCl and CH4 and formation of the heterobimetallic complexes [Ru(C6H4PPh2)2{PPh2C6H4AlMe(THF)}H] 5 and [Ru(PPh3)(C6H4PPh2)(PPh2C6H4SnMe2)] 6, respectively. The pathways to 5 and 6 have been probed by variable temperature NMR studies, together with input from DFT calculations. Complete reaction of H2 occurs with 5 at 60 °C and with 6 at room temperature to yield the spectroscopically characterized trihydride complexes [Ru(PPh2)2{PPh2C6H4AlMe}H3] 7 and [Ru(PPh2)2{PPh2C6H4SnMe2}H3] 8. In the presence of CO, 6 forms the acylated phosphine complex, [Ru(CO)2(C(O)C6H4PPh2)(PPh2C6H4SnMe2)] 9, through a series of intermediates that were identified by NMR spectroscopy in conjunction with 13CO labeling. Complex 6 undergoes addition and substitution reactions with the N-heterocyclic carbene 1,3,4,5-tetramethylimidazol-2-ylidene (IMe4) to give [Ru(IMe4)2(PPh2C6H4)(PPh2C6H4SnMe2)] 10, which converted via rare N-Me group C-H activation to [Ru(IMe4)(PPh3)(IMe4)'(PPh2C6H4SnMe2)] 11 upon heating at 60 °C and to a mixture of [Ru(IMe4)2(IMe4)'(PPh2C6H4SnMe2)] 12 and [Ru(PPh3)(PPh2C6H4)(IMe4-SnMe2)'] 13 at 120 °C.

3.
Chemistry ; 27(52): 13221-13234, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34190374

ABSTRACT

The addition of PPh2 H, PPhMeH, PPhH2 , P(para-Tol)H2 , PMesH2 and PH3 to the two-coordinate Ni0 N-heterocyclic carbene species [Ni(NHC)2 ] (NHC=IiPr2 , IMe4 , IEt2 Me2 ) affords a series of mononuclear, terminal phosphido nickel complexes. Structural characterisation of nine of these compounds shows that they have unusual trans [H-Ni-PR2 ] or novel trans [R2 P-Ni-PR2 ] geometries. The bis-phosphido complexes are more accessible when smaller NHCs (IMe4 >IEt2 Me2 >IiPr2 ) and phosphines are employed. P-P activation of the diphosphines R2 P-PR2 (R2 =Ph2 , PhMe) provides an alternative route to some of the [Ni(NHC)2 (PR2 )2 ] complexes. DFT calculations capture these trends with P-H bond activation proceeding from unconventional phosphine adducts in which the H substituent bridges the Ni-P bond. P-P bond activation from [Ni(NHC)2 (Ph2 P-PPh2 )] adducts proceeds with computed barriers below 10 kcal mol-1 . The ability of the [Ni(NHC)2 ] moiety to afford isolable terminal phosphido products reflects the stability of the Ni-NHC bond that prevents ligand dissociation and onward reaction.

4.
Inorg Chem ; 59(21): 15606-15619, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33074685

ABSTRACT

The preparation and reactivity with H2 of two Ru complexes of the novel ZnPhos ligand (ZnPhos = Zn(o-C6H4PPh2)2) are described. Ru(ZnPhos)(CO)3 (2) and Ru(ZnPhos)(IMe4)2 (4; IMe4 = 1,3,4,5-tetramethylimidazol-2-ylidene) are formed directly from the reaction of Ru(PPh3)(C6H4PPh2)2(ZnMe)2 (1) or Ru(PPh3)3HCl/LiCH2TMS/ZnMe2 with CO and IMe4, respectively. Structural and electronic structure analyses characterize both 2 and 4 as Ru(0) species in which Ru donates to the Z-type Zn center of the ZnPhos ligand; in 2, Ru adopts an octahedral coordination, while 4 displays square-pyramidal coordination with Zn in the axial position. Under photolytic conditions, 2 loses CO to give Ru(ZnPhos)(CO)2 that then adds H2 over the Ru-Zn bond to form Ru(ZnPhos)(CO)2(µ-H)2 (3). In contrast, 4 reacts directly with H2 to set up an equilibrium with Ru(ZnPhos)(IMe4)2H2 (5), the product of oxidative addition at the Ru center. DFT calculations rationalize these different outcomes in terms of the energies of the square-pyramidal Ru(ZnPhos)L2 intermediates in which Zn sits in a basal site: for L = CO, this is readily accessed and allows H2 to add across the Ru-Zn bond, but for L = IMe4, this species is kinetically inaccessible and reaction can only occur at the Ru center. This difference is related to the strong π-acceptor ability of CO compared to IMe4. Steric effects associated with the larger IMe4 ligands are not significant. Species 4 can be considered as a Ru(0)L4 species that is stabilized by the Ru→Zn interaction. As such, it is a rare example of a stable Ru(0)L4 species devoid of strong π-acceptor ligands.

5.
J Am Chem Soc ; 141(25): 9823-9826, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31180660

ABSTRACT

It has been previously demonstrated that stable singlet electrophilic carbenes can behave as metal surrogates in the activation of strong E-H bonds (E = H, B, N, Si, P), but it was believed that these activations only proceed through an irreversible activation barrier. Herein we show that, as is the case with transition metals, the steric environment can be used to promote reductive elimination at carbon centers.

SELECTION OF CITATIONS
SEARCH DETAIL
...