Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 28(2): 842-50, 1989 Jan 24.
Article in English | MEDLINE | ID: mdl-2713351

ABSTRACT

Fibronectin, a large multidomain glycoprotein, binds denatured collagen (gelatin) and mediates cell attachment and spreading on collagen-coated surfaces. Despite the high affinity, binding to gelatin is disrupted by relatively mild conditions. We have examined the effects of denaturants on the structure and function of a 42-kDa gelatin-binding fragment (GBF) isolated from chymotryptic and thermolytic digests of the parent protein. Application of linear gradients to GBF-loaded gelatin-agarose columns resulted in peak elution of the fragment at pH 5.2 or 10.2, at 0.4 M dimethylformamide, 0.9 M GdmCl, or 2.0 M urea, conditions far short of those required to induce structural changes detectable by fluorescence or circular dichroism. Solvent perturbation, fluorescence quenching, and chemical modification experiments indicate that about half of the 8 tryptophans, one-third of the 21 tyrosines, and all of the 9 lysine residues are solvent-exposed in the native protein and that 1 or more of the latter are directly involved in binding to gelatin, most likely through a hydrogen-bonding mechanism. Titration with GdmCl produced a single unfolding transition centered near 2.5 M GdmCl as monitored by changes in fluorescence and circular dichroism. This transition was fully reversible with complete recovery of structural parameters and gelatin binding. Treatment with disulfide reducing agents caused rapid irreversible changes in structure similar to those produced by GdmCl with concomitant loss of gelatin binding. Thus, tertiary and secondary structures are important for binding, but binding can be disrupted without perturbing those structures.


Subject(s)
Fibronectins/blood , Gelatin/metabolism , Animals , Binding Sites , Fibronectins/isolation & purification , Humans , Hydrogen-Ion Concentration , Kinetics , Peptide Fragments/isolation & purification , Peptide Fragments/metabolism , Protein Binding , Protein Conformation , Protein Denaturation , Skin/metabolism , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Swine
2.
J Biol Chem ; 263(10): 4624-8, 1988 Apr 05.
Article in English | MEDLINE | ID: mdl-3127386

ABSTRACT

Fluorescent probes have been used to obtain dissociation constants for the fluid-phase interaction of human plasma fibronectin and several of its gelatin-binding fragments with purified alpha chains of type I rat tail collagen, as well as with a cyanogen bromide fragment (CB7) of the alpha 1 chain in 0.02 M Tris buffer containing 0.15 M NaCl at pH 7.4. Addition of fibronectin to fluorescein-labeled collagen chains caused a dose-dependent increase in the fluorescence anisotropy which continued over several logs of titrant concentration. Scatchard-type plots of the anisotropy response were biphasic indicating the presence of one or more weak sites (Kd greater than microM) along the collagen chain in addition to a strong site characterized by Kd = 1.3 X 10(-8) M at 25 degrees C. Gelatin-binding fragments with Mr = 42,000, 60,000, and 72,000 also produced a biphasic response with Kd values for the high affinity site being 10- to 20-fold greater than for intact fibronectin. Binding of fibronectin and its fragments to fluorescent-labeled CB7 was essentially the same as to the whole alpha 1 chain. In all cases, the anisotropy response could be reversed or prevented by addition of excess unlabeled gelatin or CB7, but not by synthetic peptides spanning the collagenase cleavage site of alpha 1 (I). Studies of the temperature dependence of Kd for binding of fibronectin to the high affinity site on alpha 1 produced a value of +16 kcal/mol for the enthalpy of dissociation below 30 degrees C. Above this temperature, fibronectin appeared to undergo a subtle conformational transition characterization by a reduced affinity for collagen. This transition occurred in whole fibronectin but not in the gelatin-binding fragments and may involve disruption of intramolecular interactions between different domains.


Subject(s)
Collagen/metabolism , Fibronectins/blood , Gelatin/metabolism , Binding Sites , Fluorescein-5-isothiocyanate , Fluoresceins , Fluorescence Polarization , Fluorescent Dyes , Humans , Kinetics , Macromolecular Substances , Peptide Fragments/metabolism , Protein Binding , Thiocyanates
3.
Biochemistry ; 26(1): 103-9, 1987 Jan 13.
Article in English | MEDLINE | ID: mdl-3828292

ABSTRACT

Two different lipophilic photoreagents, [3H]adamantane diazirine and 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID), have been utilized to examine the interactions of blood coagulation factor Va with calcium, prothrombin, factor Xa, and, in particular, phospholipid vesicles. With each of these structurally dissimilar reagents, the extent of photolabeling of factor Va was greater when the protein was bound to a membrane surface than when it was free in solution. Specifically, the covalent photoreaction with Vl, the smaller subunit of factor Va, was 2-fold higher in the presence of phosphatidylcholine/phosphatidylserine (PC/PS, 3:1) vesicles, to which factor Va binds, than in the presence of 100% PC vesicles, to which the protein does not bind. However, the magnitude of the PC/PS-dependent photolabeling was much less than has been observed previously with integral membrane proteins. It therefore appears that the binding of factor Va to the membrane surface exposes Vl to the lipid core of the bilayer, but that only a small portion of the Vl polypeptide is exposed to, or embedded in, the bilayer core. Addition of either prothrombin or active-site-blocked factor Xa to PC/PS-bound factor Va had little effect on the photolabeling of Vl with TID, but reduced substantially the covalent labeling of Vh, the larger subunit of factor Va. This indicates that prothrombin and factor Xa each cover nonpolar surfaces on Vh when the macromolecules associate on the PC/PS surface. It therefore seems likely that the formation of the prothrombinase complex involves a direct interaction between Vh and factor Xa and between Vh and prothrombin.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Adamantane/analogs & derivatives , Azirines/metabolism , Factor V/metabolism , Liposomes , Phosphatidylcholines , Phosphatidylserines , Adamantane/metabolism , Animals , Cattle , Factor Va , Factor X/metabolism , Factor Xa , Iodine Radioisotopes , Kinetics , Photochemistry , Protein Binding , Prothrombin/metabolism , Tritium
4.
Biochemistry ; 25(17): 4958-69, 1986 Aug 26.
Article in English | MEDLINE | ID: mdl-3768326

ABSTRACT

The larger subunit of blood coagulation factor Va was covalently labeled with iodoacetamido derivatives of fluorescein and rhodamine without loss of functional activity, as measured by either the one-stage clotting assay or the ability to accelerate prothrombin activation in a purified system. The spectral properties of the dyes were not altered by the presence or absence of the smaller subunit of factor Va, Ca2+, prothrombin, factor Xa, or phosphatidylcholine/phosphatidylserine (PC/PS, 4:1) vesicles. When fluorescein-labeled protein (factor VaF) was titrated with PC/PS vesicles containing either octadecylrhodamine or 5-(N-hexadecanoylamino)eosin, fluorescence energy transfer was observed between the protein-bound donor dyes and the acceptor dyes at the outer surface of the phospholipid bilayer. The extent of energy transfer correlated directly with the extent of protein binding to the vesicles monitored by light scattering. The distance of closest approach between the fluorescein on factor Va and the bilayer surface averaged 90 A for the two different acceptors. Association of factor VaF with factor Xa on the phospholipid surface reduced this separation by 7 A, but association with prothrombin did not alter the distance between the labeled domain on factor VaF and the surface. The efficiency of diffusion-enhanced energy transfer between rhodamine-labeled factor Va and terbium dipicolinate entrapped inside PC/PS vesicles was less than 0.01, consistent with the location of the dye far above the inner surface of the vesicle. Thus, a domain of membrane-bound factor Va is located a minimum of 90 A above the phospholipid surface.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Factor V/metabolism , Liposomes , Phosphatidylcholines/metabolism , Phosphatidylserines/metabolism , Animals , Binding Sites , Cattle , Energy Transfer , Factor Va , Factor X/metabolism , Factor Xa , Fluorescent Dyes , Kinetics , Protein Binding , Spectrometry, Fluorescence/methods
5.
J Biol Chem ; 259(9): 5698-704, 1984 May 10.
Article in English | MEDLINE | ID: mdl-6425296

ABSTRACT

We have examined the calcium-binding properties and metal ion-dependent conformational changes of proteolytically modified derivatives of factor IX that lack gamma-carboxyglutamic acid (Gla) residues. Equilibrium dialysis experiments demonstrated that a Gla-domainless factor IX species retained a single high affinity calcium ion-binding site (Kd = 85 +/- 5 microM). Ca2+ binding to this site was accompanied by a decrease in intrinsic fluorescence emission intensity (Kd = 63 +/- 15 microM). These spectral changes were reversed upon the addition of EDTA. Titration with Sr2+ resulted in little change in fluorescence intensity below 1 mM, while titration with Tb3+ caused fluorescence changes similar to those observed with Ca2+. Tb3+ and Ca2+ appear to bind to the same site because tryptophan-dependent terbium emission was reduced by the addition of Ca2+. Similar results were obtained with a Gla-domainless factor IX species lacking the activation peptide. Gla domain-containing factor IX species exhibited fluorescence changes similar to those of the Gla-domainless proteins at low Ca2+, but an additional structural transition was found at higher Ca2+ concentrations (apparent Kd greater than 0.8 mM). Thus, the conformations of factor IX proteins are nucleated and/or stabilized by calcium binding to a high affinity site which does not contain Gla residues. The binding of Ca2+ to lower affinity Gla domain-dependent metal ion-binding sites elicits an additional conformational change. The strong similarities between these results and those obtained with protein C (Johnson, A. E., Esmon, N. L., Laue, T. M. & Esmon, C. T. (1983) J. Biol. Chem. 258, 5554-5560), coupled with the remarkable sequence homologies of the vitamin K-dependent proteins, suggest that the high affinity Gla-independent Ca2+-binding site may be a common feature of vitamin K-dependent proteins.


Subject(s)
1-Carboxyglutamic Acid/analysis , Calcium/metabolism , Factor IX/metabolism , Glutamates/analysis , Amino Acid Sequence , Binding Sites , Calcium/pharmacology , Edetic Acid/pharmacology , Electrophoresis, Polyacrylamide Gel , Factor IXa , Humans , Kinetics , Protein Binding , Protein Conformation , Spectrometry, Fluorescence , Terbium
SELECTION OF CITATIONS
SEARCH DETAIL
...