Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 99(13): 137201, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17930627

ABSTRACT

Elemental chromium orders antiferromagnetically near room temperature, but the ordering temperature can be driven to zero by applying large pressures. We combine diamond anvil cell and synchrotron x-ray diffraction techniques to measure directly the spin and charge order in the pure metal at the approach to its quantum critical point. Both spin and charge order are suppressed exponentially with pressure, well beyond the region where disorder cuts off such a simple evolution, and they maintain a harmonic scaling relationship over decades in scattering intensity. By comparing the development of the order parameter with that of the magnetic wave vector, it is possible to ascribe the destruction of antiferromagnetism to the growth in electron kinetic energy relative to the underlying magnetic exchange interaction.

2.
Nature ; 447(7140): 68-71, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17476263

ABSTRACT

Measurements of magnetic noise emanating from ferromagnets owing to domain motion were first carried out nearly 100 years ago, and have underpinned much science and technology. Antiferromagnets, which carry no net external magnetic dipole moment, yet have a periodic arrangement of the electron spins extending over macroscopic distances, should also display magnetic noise. However, this must be sampled at spatial wavelengths of the order of several interatomic spacings, rather than the macroscopic scales characteristic of ferromagnets. Here we present a direct measurement of the fluctuations in the nanometre-scale superstructure of spin- and charge-density waves associated with antiferromagnetism in elemental chromium. The technique used is X-ray photon correlation spectroscopy, where coherent X-ray diffraction produces a speckle pattern that serves as a 'fingerprint' of a particular magnetic domain configuration. The temporal evolution of the patterns corresponds to domain walls advancing and retreating over micrometre distances. This work demonstrates a useful measurement tool for antiferromagnetic domain wall engineering, but also reveals a fundamental finding about spin dynamics in the simplest antiferromagnet: although the domain wall motion is thermally activated at temperatures above 100 K, it is not so at lower temperatures, and indeed has a rate that saturates at a finite value-consistent with quantum fluctuations-on cooling below 40 K.

3.
Phys Rev Lett ; 98(11): 117206, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17501089

ABSTRACT

Magnetotransport measurements on small single crystals of Cr, the elemental antiferromagnet, reveal the hysteretic thermodynamics of the domain structure. The temperature dependence of the transport coefficients is directly correlated with the real-space evolution of the domain configuration as recorded by x-ray microprobe imaging, revealing the effect of antiferromagnetic domain walls on electron transport. A single antiferromagnetic domain wall interface resistance is deduced to be of order 5 x 10(-5) mu Omega cm(2) at a temperature of 100 K.

4.
Nature ; 431(7012): 1078-81, 2004 Oct 28.
Article in English | MEDLINE | ID: mdl-15510143

ABSTRACT

Determining the nature of the electronic phases that compete with superconductivity in high-transition-temperature (high-T(c)) superconductors is one of the deepest problems in condensed matter physics. One candidate is the 'stripe' phase, in which the charge carriers (holes) condense into rivers of charge that separate regions of antiferromagnetism. A related but lesser known system is the 'spin ladder', which consists of two coupled chains of magnetic ions forming an array of rungs. A doped ladder can be thought of as a high-T(c) material with lower dimensionality, and has been predicted to exhibit both superconductivity and an insulating 'hole crystal' phase in which the carriers are localized through many-body interactions. The competition between the two resembles that believed to operate between stripes and superconductivity in high-T(c) materials. Here we report the existence of a hole crystal in the doped spin ladder of Sr14Cu24O41 using a resonant X-ray scattering technique. This phase exists without a detectable distortion in the structural lattice, indicating that it arises from many-body electronic effects. Our measurements confirm theoretical predictions, and support the picture that proximity to charge ordered states is a general property of superconductivity in copper oxides.

5.
Phys Rev Lett ; 89(23): 236404, 2002 Dec 02.
Article in English | MEDLINE | ID: mdl-12485025

ABSTRACT

Inelastic x-ray scattering was used to measure the plasmon as a function of electron density in liquid lithium ammonia as well as the low temperature solid phase. As the electronic density is lowered, electronic correlation effects cause the random-phase approximation (RPA) to break down, requiring more advanced theoretical treatments. The deviation from RPA becomes greatest at the lowest electronic densities. We also see evidence for decreased electronic screening as shown by an increase in the strength of the pseudopotential at lower concentrations. Plasmon behavior in the solid is similar to that of the heavier alkali metals, but surprisingly different than in the liquid.

6.
Phys Rev Lett ; 88(17): 177403, 2002 Apr 29.
Article in English | MEDLINE | ID: mdl-12005784

ABSTRACT

We report momentum-resolved charge excitations in a one-dimensional (1D) Mott insulator studied using high resolution inelastic x-ray scattering over the entire Brillouin zone for the first time. Excitations at the insulating gap edge are found to be highly dispersive (momentum dependent) compared to excitations observed in two-dimensional Mott insulators. The observed dispersion in 1D cuprates ( SrCuO2 and Sr2CuO3) is consistent with charge excitations involving holons which is unique to spin-1/2 quantum chain systems. These results point to the potential utility of momentum-resolved inelastic x-ray scattering in providing valuable information about electronic structure of strongly correlated insulators.

7.
Science ; 295(5557): 1042-5, 2002 Feb 08.
Article in English | MEDLINE | ID: mdl-11834828

ABSTRACT

Magnetic x-ray diffraction combined with x-ray focusing optics was used to image individual antiferromagnetic spin density wave domains in a chromium single crystal at the micron scale. The cross section for nonresonant magnetic x-ray scattering depends on the antiferromagnetic modulation vector and spin polarization direction and allows these quantities to be extracted independently. The technique was used to show that the broadening of the nominally first-order "spin-flip" transition at 123 kelvin, at which the spins rotate by 90 degrees C, originates at the walls between domains with orthogonal modulation vectors. During cooling, the transition begins at these walls and progresses inward. The modulation vector domains are themselves unchanged.

SELECTION OF CITATIONS
SEARCH DETAIL
...