Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Med Ther ; 22(1): 90, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35337309

ABSTRACT

BACKGROUND: Euphorbia grandicornis is widely utilized in traditional medicine for the treatment of microbial infections including sexually transmitted diseases such as syphilis, gonorrhoea and for healing of wounds. OBJECTIVE: The aim of this work was to isolate and evaluate the antibacterial and anticancer activities of Euphorbia grandicornis chemical constituents. METHODS: Chemical constituents were isolated and identified using various spectroscopic techniques such as IR, MS, and NMR. The single point growth inhibitory potential of the compounds was determined using a 96-well plate based assay. RESULTS: The CH2Cl2 crude extracts exhibited potent antibacterial activity against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538 with percentage growth of 94.90 ± 4.24 and 29.47 ± 4.89 respectively. Hence, the CH2Cl2 crude extract was further subjected to column chromatography which resulted in the isolation of methyl 2,5-dihydroxybenzoate (1), n-octyl benzoate (2), friedelanol (3), and germanicol (4) and identification of compounds 12-24 for the first time in the species based on the LC-MS/MS spectroscopic data. The purified compounds (1-4), and previously reported compounds (5-11) were evaluated for antibacterial activities against S. aureus and E. coli, as well as the cytotoxicity effects against HeLa cells. Of the purified compounds, methyl 2,5-dihydroxybenzoate (1), was the most active against E.coli and S. aureus with a percentage growth of 19.12 ± 0.65 and 23.32 ± 0.23 respectively. ß-amyrin (6), and ß-sitosterol (8), were active against S. aureus with percentage growth of 27.17 ± 0.07, and 47.79 ± 2.99 respectively. CONCLUSION: The results obtained from this study indicate that E. grandicornis, is a rich source of chemical constituents that may provide new lead compounds for the development of antibacterial agents.


Subject(s)
Euphorbia , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chromatography, Liquid , Escherichia coli , HeLa Cells , Humans , Microbial Sensitivity Tests , Plant Extracts/chemistry , Staphylococcus aureus , Tandem Mass Spectrometry
2.
Biosci Biotechnol Biochem ; 78(10): 1797-802, 2014.
Article in English | MEDLINE | ID: mdl-25273148

ABSTRACT

Colonization and oxidative metabolism of South African low-rank discard coal by the fungal strain ECCN 84 previously isolated from a coal environment and identified as Neosartorya fischeri was investigated. Results show that waste coal supported fungal growth. Colonization of waste coal particles by N. fischeri ECCN 84 was associated with the formation of compact spherical pellets or sclerotia-like structures. Dissection of the pellets from liquid cultures revealed a nucleus of "engulfed" coal which when analyzed by energy dispersive X-ray spectroscopy showed a time-dependent decline in weight percentage of elemental carbon and an increase in elemental oxygen. Proliferation of peroxisomes in hyphae attached to coal particles and increased extracellular laccase activity occurred after addition of waste coal to cultures of N. fischeri ECCN 84. These results support a role for oxidative enzyme action in the biodegradation of coal and suggest that extracellular laccase is a key component in this process.


Subject(s)
Coal/microbiology , Industrial Waste , Neosartorya/enzymology , Neosartorya/growth & development , Biocatalysis , Biodegradation, Environmental , Laccase/metabolism , Neosartorya/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...