Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Type of study
Publication year range
1.
Acta Biomater ; 151: 174-182, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35948175

ABSTRACT

Cerebral aneurysms (CA), an abnormal bulge in the arteries that supply blood to the brain, are prone to rupture and can cause hemorrhagic stroke. Physicians can treat CA by blocking blood flow to the aneurysmal sac via clipping of the aneurysm neck via open procedure, or endovascular occlusion of the aneurysm with embolic materials to promote thrombus formation to prevent further inflow of blood into the aneurysm. Endovascular treatment options for CA still have significant limitations in terms of safety, usability in coagulopathic patients, and risks of device migration. Bioactive embolic therapies, consisting of non-toxic bioresorbable materials that encourage the growth of neointima across the aneurysm neck, are needed to improve the healing of CA. In this work, the bioinspired silk-elastinlike protein-based polymer (SELP 815K), was used to embolize aneurysms in a rabbit elastase model. SELP 815K effectively embolized the model aneurysms in vivo, achieving >90% occlusion, using commercial microcatheters. No device-associated adverse effects were observed in any of the animals, and SELP 815K showed no cytotoxicity. SELP embolization did not show any deleterious effects to local tissues, and features consistent with reendothelialization of the aneurysm neck were noted in histological examination one-month post-embolization. SELP 815K shows promise as an embolic treatment for unruptured CA. STATEMENT OF SIGNIFICANCE: Unruptured cerebral aneurysms are present in approximately 3% of the population, with a fatality rate of up to 65% upon rupture. In this work a silk-elastinlike protein polymer (SELP) is explored as a liquid embolic for occlusion of cerebral aneurysms. This embolic exists as a liquid at room temperature before rapidly forming a gel at physiological temperature. This shape filling property was used to successfully occlude cerebral aneurysms in rabbits, with stable occlusion persisting for over thirty days. SELP occlusions show evidence for reendothelialization of the aneurysm sac and provide an opportunity for delivery of bioactive agents to further improve treatments.


Subject(s)
Embolization, Therapeutic , Intracranial Aneurysm , Animals , Embolization, Therapeutic/methods , Intracranial Aneurysm/therapy , Pancreatic Elastase , Polymers , Rabbits , Silk , Treatment Outcome
3.
J Control Release ; 344: 39-49, 2022 04.
Article in English | MEDLINE | ID: mdl-35182613

ABSTRACT

Various polymers used in controlled release applications exhibit solution-based thermal responses. Unfortunately, very few characterization and imaging techniques permit resolution of individual polymers during their thermally-triggered phase transitions. Here, we demonstrate the use of temperature-ramp liquid-cell transmission electron microscopy (LCTEM) for real-time evaluation of the solution and interfacial behavior of elastinlike polypeptides (ELPs) and their self-assembled nanostructures over a temperature range incorporating their intrinsic lower critical solution temperatures (LCSTs). Individual polymers and supramolecular assemblies were discriminated dependent upon solubility states. The recombinant polymers were shown to adsorb to the silicon-nitride chip window from the buffered saline solution and desorb in a temperature-dependent manner. Silk-elastinlike protein block copolymers (SELPs) (composed of repeat peptide motifs of silk and elastin) differed from ELPs in thermal behavior. While both polymers were shown to cluster, only SELPs formed robust amyloid-like fibers upon heating.


Subject(s)
Elastin , Polymers , Elastin/chemistry , Hydrogels/chemistry , Microscopy, Electron, Transmission , Polymers/chemistry , Silk/chemistry , Temperature
4.
J Control Release ; 324: 471-481, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32464151

ABSTRACT

Chronic toxicity evaluations of nanotechnology-based drugs are essential to support initiation of clinical trials. Ideally such evaluations should address the dosing strategy in human applications and provide sufficient information for long-term usage. Herein, we investigated one-year toxicity of non-surface modified silica nanoparticles (SNPs) with variations in size and porosity (Stöber SNPs 46 ± 4.9 and 432.0 ± 18.7 nm and mesoporous SNPs 466.0 ± 86.0 nm) upon single dose intravenous administration to female and male BALB/c mice (10 animal/sex/group) along with their human blood compatibility. Our evidence of clinical observation and blood parameters showed no significant changes in body weight, cell blood count, nor plasma biomarker indices. No significant changes were noted in post necropsy examination of internal organs and organ-to-body weight ratio. However, microscopic examination revealed significant amount of liver inflammation and aggregates of histocytes with neutrophils within the spleen suggesting an ongoing or resolving injury. The fast accumulation of these plain SNPs in the liver and spleen upon IV administration and the duration needed for their clearance caused these injuries. There were also subtle changes which were attributed to prior infarctions or resolved intravascular thrombosis and included calcifications in pulmonary vessels, focal cardiac fibrosis with calcifications, and focal renal injury. Most of the pathologic lesions were observed when large, non-porous SNPs were administered. Statistically significant chronic toxicity was not observed for the small non-porous particles and for the mesoporous particles. This one-year post-exposure evaluation indicate that female and male BALB/c mice need up to one year to recover from acute tissue toxic effects of silica nanoparticles upon single dose intravenous administration at their 10-day maximum tolerated dose. Further, ex vivo testing with human blood and plasma revealed no hemolysis or complement activation following incubation with these silica nanoparticles. These results can inform the potential utility of silica nanoparticles in biomedical applications such as controlled drug delivery where intravenous injection of the particles is intended.


Subject(s)
Nanoparticles , Silicon Dioxide , Animals , Drug Delivery Systems , Female , Humans , Male , Mice , Mice, Inbred BALB C , Nanoparticles/toxicity , Porosity , Silicon Dioxide/toxicity
5.
Theranostics ; 10(10): 4530-4543, 2020.
Article in English | MEDLINE | ID: mdl-32292513

ABSTRACT

Rationale: Intraoperative bleeding impairs physicians' ability to visualize the surgical field, leading to increased risk of surgical complications and reduced outcomes. Bleeding is particularly challenging during endoscopic-assisted surgical resection of hypervascular tumors in the head and neck. A tool that controls bleeding while marking tumor margins has the potential to improve gross tumor resection, reduce surgical morbidity, decrease blood loss, shorten procedure time, prevent damage to surrounding tissues, and limit postoperative pain. Herein, we develop and characterize a new system that combines pre-surgical embolization with improved visualization for endoscopic fluorescence image-guided tumor resection. Methods: Silk-elastinlike protein (SELP) polymers were employed as liquid embolic vehicles for delivery of a clinically used near-infrared dye, indocyanine green (ICG). The biophysical properties of SELP, including gelation kinetics, modulus of elasticity, and viscosity, in response to ICG incorporation using rheology, were characterized. ICG release from embolic SELP was modeled in tissue phantoms and via fluorescence imaging. The embolic capability of the SELP-ICG system was then tested in a microfluidic model of tumor vasculature. Lastly, the cytotoxicity of the SELP-ICG system in L-929 fibroblasts and human umbilical vein endothelial cells (HUVEC) was assessed. Results: ICG incorporation into SELP accelerated gelation and increased its modulus of elasticity. The SELP embolic system released 83 ± 8% of the total ICG within 24 hours, matching clinical practice for pre-surgical embolization procedures. Adding ICG to SELP did not reduce injectability, but did improve the gelation kinetics. After simulated embolization, ICG released from SELP in tissue phantoms diffused a sufficient distance to deliver dye throughout a tumor. ICG-loaded SELP was injectable through a clinical 2.3 Fr microcatheter and demonstrated deep penetration into 50-µm microfluidic-simulated blood vessels with durable occlusion. Incorporation of ICG into SELP improved biocompatibility with HUVECs, but had no effect on L-929 cell viability. Principle Conclusions: We report the development and characterization of a new, dual-functional embolization-visualization system for improving fluorescence-imaged endoscopic surgical resection of hypervascular tumors.


Subject(s)
Biopolymers/therapeutic use , Embolization, Therapeutic/methods , Fibroins/therapeutic use , Fibronectins/therapeutic use , Neoplasms/therapy , Optical Imaging , Recombinant Fusion Proteins/therapeutic use , Surgery, Computer-Assisted , Animals , Cell Line , Gels/therapeutic use , Human Umbilical Vein Endothelial Cells , Humans , Indocyanine Green/chemistry , Margins of Excision , Mice , Viscosity
6.
J Drug Target ; 28(7-8): 766-779, 2020.
Article in English | MEDLINE | ID: mdl-32306773

ABSTRACT

Silk-elastinlike protein polymers (SELPs) self-assemble into nanostructures when designed with appropriate silk-to-elastin ratios. Here, we investigate the effect of insertion of a matrix metalloproteinase-responsive peptide sequence, GPQGIFGQ, into various locations within the SELP backbone on supramolecular self-assembly. Insertion of the hydrophilic, enzyme-degradable sequence into the elastin repeats allows the formation of dilution-stable nanostructures, while insertion into the hydrophobic silk motifs inhibited self-assembly. The SELP assemblies retained their lower critical solution temperature (LCST) thermal response, allowing up to eightfold volumetric changes due to temperature-induced size change. A model hydrophobic drug was incorporated into SELP nanoassemblies utilising a combination of precipitation, incubation and tangential flow filtration. While the nanoconstructs degraded in response to MMP activity, drug release kinetics was independent of MMP concentration. Drug release modelling suggests that release is driven by rates of water penetration into the SELP nanostructures and drug dissolution. In vitro testing revealed that SELP nanoassemblies reduced the immunotoxic and haemolytic side effects of doxorubicin in human blood while maintaining its cytotoxic activity.


Subject(s)
Chemistry, Pharmaceutical/methods , Elastin/chemistry , Peptides/chemistry , Silk/chemistry , Dose-Response Relationship, Drug , Doxorubicin/administration & dosage , Doxorubicin/adverse effects , Doxorubicin/chemistry , Drug Liberation , Hydrophobic and Hydrophilic Interactions , Metalloproteases/chemistry , Nanostructures , Polymers/chemistry , Temperature
9.
10.
Biomaterials ; 217: 119293, 2019 10.
Article in English | MEDLINE | ID: mdl-31276948

ABSTRACT

Interstitial cystitis (IC), also known as painful bladder syndrome, is a debilitating chronic condition with many patients failing to respond to current treatment options. Rapid clearance, mucosal coating, and tight epithelium create strong natural barriers that reduce the effectiveness of many pharmacological interventions in the bladder. Intravesical drug delivery (IDD) is the administration of therapeutic compounds or devices to the urinary bladder via a urethral catheter. Previous work in improving IDD for IC has focused on the sustained delivery of analgesics within the bladder and other small molecule drugs which do not address underlying inflammation and bladder damage. Therapeutic glycosaminoglycans (GAG) function by restoring the mucosal barrier within the bladder, promoting healing responses, and preventing irritating solutes from reaching the bladder wall. There is an unmet medical need for a therapy that provides both acute relief of symptoms while alleviating underlying physiological sources of inflammation and promoting healing within the urothelium. Semi-synthetic glycosaminoglycan ethers (SAGE) are an emerging class of therapeutic GAG with intrinsic anti-inflammatory and analgesic properties. To reduce SAGE clearance and enhance its accumulation in the bladder, we developed a silk-elastinlike protein polymer (SELP) based system to enhance SAGE IDD. We evaluated in vitro release kinetics, rheological properties, impact on bladder function, pain response, and bladder inflammation and compared their effectiveness to other temperature-responsive polymers including Poloxamer 407 and poly(lactic-co-glycolic acid)-poly(ethylene glycol). SAGE delivered via SELP-enhanced intravesical delivery substantially improved SAGE accumulation in the urothelium, provided a sustained analgesic effect 24 h after administration, and reduced inflammation.


Subject(s)
Cystitis, Interstitial/drug therapy , Drug Delivery Systems , Elastin/chemistry , Glycosaminoglycans/administration & dosage , Glycosaminoglycans/therapeutic use , Polymers/chemistry , Silk/chemistry , Temperature , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Antimicrobial Cationic Peptides , Behavior, Animal , Cathelicidins , Cystitis, Interstitial/pathology , Cystitis, Interstitial/physiopathology , Delayed-Action Preparations/therapeutic use , Disease Models, Animal , Drug Liberation , Female , Gels , Mice, Inbred C57BL , Urothelium/pathology
13.
Macromol Biosci ; 18(1)2018 01.
Article in English | MEDLINE | ID: mdl-28869362

ABSTRACT

Recombinant silk-elastinlike protein polymers (SELPs) combine the biocompatibility and thermoresponsiveness of human tropoelastin with the strength of silk. Direct control over structure of these monodisperse polymers allows for precise correlation of structure with function. This work describes the fabrication of the first SELP nanogels and evaluation of their physicochemical properties and thermoresponsiveness. Self-assembly of dilute concentrations of SELPs results in nanogels with enhanced stability over micelles due to physically crosslinked beta-sheet silk segments. The nanogels respond to thermal stimuli via size changes and aggregation. Modifying the ratio and sequence of silk to elastin in the polymer backbone results in alterations in critical gel formation concentration, stability, aggregation, size contraction temperature, and thermal reversibility. The nanogels sequester hydrophobic compounds and show promise in delivery of bioactive agents.


Subject(s)
Drug Delivery Systems , Elastin/chemistry , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Silk/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Elastin/therapeutic use , Humans , Nanogels , Nanoparticles/chemistry , Polyethylene Glycols/therapeutic use , Polyethyleneimine/therapeutic use , Polymers/chemistry , Polymers/therapeutic use , Protein Aggregates , Recombinant Proteins/chemistry , Recombinant Proteins/therapeutic use , Silk/therapeutic use , Thermosensing
14.
J Control Release ; 259: 62-75, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28153760

ABSTRACT

While commonly known for degradation of the extracellular matrix, matrix metalloproteinases (MMPs) exhibit broad potential for use in targeting of bioactive and imaging agents in cancer treatment. MMPs are upregulated at all stages of expression in cancers. A comprehensive analysis of published literature on expression of all MMP subtypes at the genetic, protein, and activity levels in normal and diseased tissues indicate targeting applicability in a variety of cancers. This expression significantly increases at advanced cancer stages, providing an improved opportunity for controlled release in higher-stage patients. Since MMPs are integral at every stage of metastasis, MMP roles in cancer are discussed with a focus on MMP distribution and mobility within cells and tumors for cancer targeting applications. Several strategies for MMP utilization in targeting - such as matrix degradation, MMP cleavage, MMP binding, and MMP-induced environmental changes - are addressed.


Subject(s)
Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/metabolism , Animals , Humans , Up-Regulation
15.
J Control Release ; 263: 46-56, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28232224

ABSTRACT

Radiation-induced proctitis (RIP) is the most common clinical adverse effect for patients receiving radiotherapy as part of the standard course of treatment for ovarian, prostate, colon, and bladder cancers. RIP limits radiation dosage, interrupts treatment, and lowers patients' quality of life. A prophylactic treatment that protects the gastrointestinal tract from deleterious effects of radiotherapy will significantly improve patient quality of life and may allow for higher and more regular doses of radiation therapy. Semi-synthetic glycosaminoglycan (GAG), generated from the sulfation of hyaluronic acid, are anti-inflammatory but have difficulty achieving therapeutic levels in many tissues. To enhance the delivery of GAG, we created an in situ gelling rectal delivery system using silk-elastinlike protein polymers (SELPs). Using solutions of SELP 815K (which contains 6 repeats of blocks comprised of 8 silk-like units, 15 elastin-like units, and 1 lysine-substituted elastin-like unit) with GAG GM-0111, we created an injectable delivery platform that transitioned in <5min from a liquid at room temperature to a hydrogel at body temperature. The hydrogels released 50% of their payload within 30min and enhanced the accumulation of GAG in the rectum compared to traditional enema-based delivery. Using a murine model of radiation-induced proctitis, the prophylactic delivery of a single dose of GAG from a SELP matrix administered prior to irradiation significantly reduced radiation-induced pain after 3, 7, and 21days by 53±4%, 47±10%, and 12±6%, respectively. Matrix-mediated delivery of GAG by SELP represents an innovative method for more effective treatment of RIP and promises to improve quality of life of cancer patients by allowing higher radiotherapy doses with improved safety.


Subject(s)
Glycosaminoglycans/administration & dosage , Hydrogels/administration & dosage , Pain/drug therapy , Proctitis/drug therapy , Proteins/administration & dosage , Radiation Injuries, Experimental/drug therapy , Animals , Behavior, Animal/drug effects , Drug Liberation , Enema , Female , Glycosaminoglycans/chemistry , Glycosaminoglycans/pharmacokinetics , Glycosaminoglycans/therapeutic use , Hydrogels/chemistry , Hydrogels/pharmacokinetics , Hydrogels/therapeutic use , Mice , Pain/etiology , Pain/metabolism , Pain/prevention & control , Proctitis/etiology , Proctitis/metabolism , Proctitis/prevention & control , Proteins/chemistry , Proteins/pharmacokinetics , Proteins/therapeutic use , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/prevention & control , Rectum/metabolism , Rheology , X-Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...