Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-516726

ABSTRACT

The SARS-CoV-2 pandemic made evident that we count with few coronavirus-fighting drugs. Here we aimed to identify a cost-effective antiviral with broad spectrum activity and high safety and tolerability profiles. We began elaborating a list of 116 drugs previously used to treat other pathologies or characterized in pre-clinical studies with potential to treat coronavirus infections. We next employed molecular modelling tools to rank the 44 most promising inhibitors and tested their efficacy as antivirals against a panel of and {beta} coronavirus, e.g., the HCoV-229E and SARS-CoV-2 viruses. Four drugs, OSW-1, U18666A, hydroxypropyl-{beta}-cyclodextrin (H{beta}CD) and phytol, showed antiviral activity against both HCoV-229E (in MRC5 cells) and SARS-CoV-2 (in Vero E6 cells). The mechanism of action of these compounds was studied by transmission electron microscopy (TEM) and by testing their capacity to inhibit the entry of SARS-CoV-2 pseudoviruses in ACE2-expressing HEK-293T cells. The entry was inhibited by H{beta}CD and U18666A, yet only H{beta}CD could inhibit SARS-CoV-2 replication in the pulmonary cells Calu-3. With these results and given that cyclodextrins are widely used for drug encapsulation and can be safely administered to humans, we further tested 6 native and modified cyclodextrins, which confirmed {beta}-cyclodextrins as the most potent inhibitors of SARS-CoV-2 replication in Calu-3 cells. All accumulated data points to {beta}-cyclodextrins as promising candidates to be used in the therapeutic treatments for SARS-CoV-2 and possibly other respiratory viruses.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-472880

ABSTRACT

The pandemic caused by the new coronavirus SARS-CoV-2 has made evident the need for broad-spectrum, efficient antiviral treatments to combat emerging and re-emerging viruses. Plitidepsin is an antitumor agent of marine origin that has also shown a potent pre-clinical efficacy against SARS-CoV-2. Plitidepsin targets the host protein eEF1A (eukaryotic translation factor 1 alpha 1) and affects viral infection at an early, post-entry step. Because electron microscopy is a valuable tool to study virus-cell interactions and the mechanism of action of antiviral drugs, in this work we have used transmission electron microscopy (TEM) to evaluate the effects of plitidepsin in SARS-CoV-2 infection in cultured Vero E6 cells 24 and 48h post-infection. In the absence of plitidepsin, TEM morphological analysis showed double-membrane vesicles (DMVs), organelles that support coronavirus genome replication, single-membrane vesicles with viral particles, large vacuoles with groups of viruses and numerous extracellular virions attached to the plasma membrane. When treated with plitidepsin, no viral structures were found in SARS-CoV-2-infected Vero E6 cells. Immunogold detection of SARS-CoV-2 nucleocapsid (N) protein and double-stranded RNA (dsRNA) provided clear signals in cells infected in the absence of plitidepsin, but complete absence in cells infected and treated with plitidepsin. The present study shows that plitidepsin completely blocks the biogenesis of viral replication organelles and the morphogenesis of virus progeny. Electron microscopy morphological analysis coupled to immunogold labeling of SARS-CoV-2 products offers a unique approach to understand how antivirals such as plitidepsin work.

3.
PLoS Pathog ; 10(4): e1004087, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24763736

ABSTRACT

Assembling of the membrane-bound viral replicase complexes (VRCs) consisting of viral- and host-encoded proteins is a key step during the replication of positive-stranded RNA viruses in the infected cells. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the involvement of eleven cellular ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. The ESCRT proteins are involved in endosomal sorting of cellular membrane proteins by forming multiprotein complexes, deforming membranes away from the cytosol and, ultimately, pinching off vesicles into the lumen of the endosomes. In this paper, we show an unexpected key role for the conserved Vps4p AAA+ ATPase, whose canonical function is to disassemble the ESCRT complexes and recycle them from the membranes back to the cytosol. We find that the tombusvirus p33 replication protein interacts with Vps4p and three ESCRT-III proteins. Interestingly, Vps4p is recruited to become a permanent component of the VRCs as shown by co-purification assays and immuno-EM. Vps4p is co-localized with the viral dsRNA and contacts the viral (+)RNA in the intracellular membrane. Deletion of Vps4p in yeast leads to the formation of crescent-like membrane structures instead of the characteristic spherule and vesicle-like structures. The in vitro assembled tombusvirus replicase based on cell-free extracts (CFE) from vps4Δ yeast is highly nuclease sensitive, in contrast with the nuclease insensitive replicase in wt CFE. These data suggest that the role of Vps4p and the ESCRT machinery is to aid building the membrane-bound VRCs, which become nuclease-insensitive to avoid the recognition by the host antiviral surveillance system and the destruction of the viral RNA. Other (+)RNA viruses of plants and animals might also subvert Vps4p and the ESCRT machinery for formation of VRCs, which require membrane deformation and spherule formation.


Subject(s)
Adenosine Triphosphatases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Tombusvirus/enzymology , Adenosine Triphosphatases/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/ultrastructure , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Tombusvirus/genetics , Tombusvirus/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...