Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Ann Entomol Soc Am ; 117(4): 220-233, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39006748

ABSTRACT

Bee monitoring, or widespread efforts to document bee community biodiversity, can involve data collection using lethal (specimen collections) or non-lethal methods (observations, photographs). Additionally, data can be collected by professional scientists or by volunteer participants from the general public. Collection-based methods presumably produce more reliable data with fewer biases against certain taxa, while photography-based approaches, such as data collected from public natural history platforms like iNaturalist, can involve more people and cover a broader geographic area. Few efforts have been made to quantify the pros and cons of these different approaches. We established a community science monitoring program to assess bee biodiversity across the state of Pennsylvania (USA) using specimen collections with nets, blue vane traps, and bowl traps. We recruited 26 participants, mostly Master Gardeners, from across the state to sample bees after receiving extensive training on bee monitoring topics and methods. The specimens they collected were identified to species, stored in museum collections, and the data added to public databases. Then, we compared the results from our collections to research-grade observations from iNaturalist during the same time period (2021 and 2022). At state and county levels, we found collections data documented over twice as much biodiversity and novel baseline natural history data (state and county records) than data from iNaturalist. iNaturalist data showed strong biases toward large-bodied and non-native species. This study demonstrates the value of highly trained community scientists for collections-based research that aims to document patterns of bee biodiversity over space and time.

2.
J Mech Behav Biomed Mater ; 157: 106639, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38970943

ABSTRACT

An intricate reciprocal relationship exists between adherent synthetic cells and their extracellular matrix (ECM). These cells deposit, organize, and degrade the ECM, which in turn influences cell phenotype via responses that include sensitivity to changes in the mechanical state that arises from changes in external loading. Collagen-based tissue equivalents are commonly used as simple but revealing model systems to study cell-matrix interactions. Nevertheless, few quantitative studies report changes in the forces that the cells establish and maintain in such gels under dynamic loading. Moreover, most prior studies have been limited to uniaxial experiments despite many soft tissues, including arteries, experiencing multiaxial loading in vivo. To begin to close this gap, we use a custom biaxial bioreactor to subject collagen gels seeded with primary aortic smooth muscle cells to different biaxial loading conditions. These conditions include cyclic loading with different amplitudes as well as different mechanical constraints at the boundaries of a cruciform sample. Irrespective of loading amplitude and boundary condition, similar mean steady-state biaxial forces emerged across all tests. Additionally, stiffness-force relationships assessed via intermittent equibiaxial force-extension tests showed remarkable similarity for ranges of forces to which the cells adapted during periods of cyclic loading. Taken together, these findings are consistent with a load-mediated homeostatic response by vascular smooth muscle cells.

3.
Pulm Circ ; 14(3): e12379, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962184

ABSTRACT

Acute kidney injury (AKI) causes distant organ dysfunction through yet unknown mechanisms, leading to multiorgan failure and death. The lungs are one of the most common extrarenal organs affected by AKI, and combined lung and kidney injury has a mortality as high as 60%-80%. One mechanism that has been implicated in lung injury after AKI involves molecules released from injured kidney cells (DAMPs, or damage-associated molecular patterns) that promote a noninfectious inflammatory response by binding to pattern recognition receptors (PRRs) constitutively expressed on the pulmonary endothelium. To date there are limited data investigating the role of PRRs and DAMPs in the pulmonary endothelial response to AKI. Understanding these mechanisms holds great promise for therapeutics aimed at ameliorating the devastating effects of AKI. In this study, we stimulate primary human microvascular endothelial cells with DAMPs derived from injured primary renal tubular epithelial cells (RTECs) as an ex-vivo model of lung injury following AKI. We show that DAMPs derived from injured RTECs cause activation of Toll-Like Receptor and NOD-Like Receptor signaling pathways as well as increase human primary pulmonary microvascular endothelial cell (HMVEC) cytokine production, cell signaling activation, and permeability. We further show that cytokine production in HMVECs in response to DAMPs derived from RTECs is reduced by the inhibition of NOD1 and NOD2, which may have implications for future therapeutics. This paper adds to our understanding of PRR expression and function in pulmonary HMVECs and provides a foundation for future work aimed at developing therapeutic strategies to prevent lung injury following AKI.

4.
ArXiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38855541

ABSTRACT

Living systems continually respond to signals from the surrounding environment. Survival requires that their responses adapt quickly and robustly to the changes in the environment. One particularly challenging example is olfactory navigation in turbulent plumes, where animals experience highly intermittent odor signals while odor concentration varies over many length- and timescales. Here, we show theoretically that Drosophila olfactory receptor neurons (ORNs) can exploit proximity to a bifurcation point of their firing dynamics to reliably extract information about the timing and intensity of fluctuations in the odor signal, which have been shown to be critical for odor-guided navigation. Close to the bifurcation, the system is intrinsically invariant to signal variance, and information about the timing, duration, and intensity of odor fluctuations is transferred efficiently. Importantly, we find that proximity to the bifurcation is maintained by mean adaptation alone and therefore does not require any additional feedback mechanism or fine-tuning. Using a biophysical model with calcium-based feedback, we demonstrate that this mechanism can explain the measured adaptation characteristics of Drosophila ORNs.

5.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38895426

ABSTRACT

In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and information bottleneck connecting the brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse populations of descending (DN), ascending (AN) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Integrating three separate EM datasets, we now provide a complete connectomic description of the ascending and descending neurons of the female nervous system of Drosophila and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have been matched across hemispheres, datasets and sexes. Crucially, we have also matched 51% of DN cell types to light level data defining specific driver lines as well as classifying all ascending populations. We use these results to reveal the general architecture, tracts, neuropil innervation and connectivity of neck connective neurons. We observe connected chains of descending and ascending neurons spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analysis of circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13), male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work represents the first EM-level circuit analyses spanning the entire central nervous system of an adult animal.

6.
bioRxiv ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38854030

ABSTRACT

E. coli use a regular lattice of receptors and attached kinases to detect and amplify faint chemical signals. Kinase output is characterized by precise adaptation to a wide range of background ligand levels and large gain in response to small relative changes in ligand concentration. These characteristics are well described by models which achieve their gain through equilibrium cooperativity. But these models are challenged by two experimental results. First, neither adaptation nor large gain are present in receptor binding assays. Second, in cells lacking adaptation machinery, fluctuations can sometimes be enormous, with essentially all kinases transitioning together. Here we introduce a far-from equilibrium model in which receptors gate the spread of activity between neighboring kinases. This model achieves large gain through a mechanism we term lattice ultrasensitivity (LU). In our LU model, kinase and receptor states are separate degrees of freedom, and kinase kinetics are dominated by chemical rates far-from-equilibrium rather than by equilibrium allostery. The model recapitulates the successes of past models, but also matches the challenging experimental findings. Importantly, unlike past lattice critical models, our LU model does not require parameters to be fine tuned for function.

7.
ArXiv ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855545

ABSTRACT

E. coli use a regular lattice of receptors and attached kinases to detect and amplify faint chemical signals. Kinase output is characterized by precise adaptation to a wide range of background ligand levels and large gain in response to small relative changes in ligand concentration. These characteristics are well described by models which achieve their gain through equilibrium cooperativity. But these models are challenged by two experimental results. First, neither adaptation nor large gain are present in receptor binding assays. Second, in cells lacking adaptation machinery, fluctuations can sometimes be enormous, with essentially all kinases transitioning together. Here we introduce a far-from equilibrium model in which receptors gate the spread of activity between neighboring kinases. This model achieves large gain through a mechanism we term lattice ultrasensitivity (LU). In our LU model, kinase and receptor states are separate degrees of freedom, and kinase kinetics are dominated by chemical rates far-from-equilibrium rather than by equilibrium allostery. The model recapitulates the successes of past models, but also matches the challenging experimental findings. Importantly, unlike past lattice critical models, our LU model does not require parameters to be fine tuned for function.

8.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38853849

ABSTRACT

Living systems continually respond to signals from the surrounding environment. Survival requires that their responses adapt quickly and robustly to the changes in the environment. One particularly challenging example is olfactory navigation in turbulent plumes, where animals experience highly intermittent odor signals while odor concentration varies over many length- and timescales. Here, we show theoretically that Drosophila olfactory receptor neurons (ORNs) can exploit proximity to a bifurcation point of their firing dynamics to reliably extract information about the timing and intensity of fluctuations in the odor signal, which have been shown to be critical for odor-guided navigation. Close to the bifurcation, the system is intrinsically invariant to signal variance, and information about the timing, duration, and intensity of odor fluctuations is transferred efficiently. Importantly, we find that proximity to the bifurcation is maintained by mean adaptation alone and therefore does not require any additional feedback mechanism or fine-tuning. Using a biophysical model with calcium-based feedback, we demonstrate that this mechanism can explain the measured adaptation characteristics of Drosophila ORNs.

9.
Physiol Plant ; 176(3): e14370, 2024.
Article in English | MEDLINE | ID: mdl-38818570

ABSTRACT

With climate change, droughts are expected to be more frequent and severe, severely impacting plant biomass and quality. Here, we show that overexpressing the Arabidopsis gene AtFtsHi3 (FtsHi3OE) enhances drought-tolerant phenotypes without compromising plant growth. AtFtsHi3 encodes a chloroplast envelope pseudo-protease; knock-down mutants (ftshi3-1) are found to be drought tolerant but exhibit stunted growth. Altered AtFtsHi3 expression therefore leads to drought tolerance, while only diminished expression of this gene leads to growth retardation. To understand the underlying mechanisms of the enhanced drought tolerance, we compared the proteomes of ftshi3-1 and pFtsHi3-FtsHi3OE (pFtsHi3-OE) to wild-type plants under well-watered and drought conditions. Drought-related processes like osmotic stress, water transport, and abscisic acid response were enriched in pFtsHi3-OE and ftshi3-1 mutants following their enhanced drought response compared to wild-type. The knock-down mutant ftshi3-1 showed an increased abundance of HSP90, HSP93, and TIC110 proteins, hinting at a potential downstream role of AtFtsHi3 in chloroplast pre-protein import. Mathematical modeling was performed to understand how variation in the transcript abundance of AtFtsHi3 can, on the one hand, lead to drought tolerance in both overexpression and knock-down lines, yet, on the other hand, affect plant growth so differently. The results led us to hypothesize that AtFtsHi3 may form complexes with at least two other protease subunits, either as homo- or heteromeric structures. Enriched amounts of AtFtsH7/9, AtFtsH11, AtFtsH12, and AtFtsHi4 in ftshi3-1 suggest a possible compensation mechanism for these proteases in the hexamer.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Droughts , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Plants, Genetically Modified , Plastids/metabolism , Plastids/genetics , Drought Resistance
10.
PLoS Pathog ; 20(5): e1012245, 2024 May.
Article in English | MEDLINE | ID: mdl-38768235

ABSTRACT

Albendazole (a benzimidazole) and ivermectin (a macrocyclic lactone) are the two most commonly co-administered anthelmintic drugs in mass-drug administration programs worldwide. Despite emerging resistance, we do not fully understand the mechanisms of resistance to these drugs nor the consequences of delivering them in combination. Albendazole resistance has primarily been attributed to variation in the drug target, a beta-tubulin gene. Ivermectin targets glutamate-gated chloride channels (GluCls), but it is unknown whether GluCl genes are involved in ivermectin resistance in nature. Using Caenorhabditis elegans, we defined the fitness costs associated with loss of the drug target genes singly or in combinations of the genes that encode GluCl subunits. We quantified the loss-of-function effects on three traits: (i) multi-generational competitive fitness, (ii) fecundity, and (iii) development. In competitive fitness and development assays, we found that a deletion of the beta-tubulin gene ben-1 conferred albendazole resistance, but ivermectin resistance required the loss of two GluCl genes (avr-14 and avr-15). The fecundity assays revealed that loss of ben-1 did not provide any fitness benefit in albendazole conditions and that no GluCl deletion mutants were resistant to ivermectin. Next, we searched for evidence of multi-drug resistance across the three traits. Loss of ben-1 did not confer resistance to ivermectin, nor did loss of any single GluCl subunit or combination confer resistance to albendazole. Finally, we assessed the development of 124 C. elegans wild strains across six benzimidazoles and seven macrocyclic lactones to identify evidence of multi-drug resistance between the two drug classes and found a strong phenotypic correlation within a drug class but not across drug classes. Because each gene affects various aspects of nematode physiology, these results suggest that it is necessary to assess multiple fitness traits to evaluate how each gene contributes to anthelmintic resistance.


Subject(s)
Anthelmintics , Caenorhabditis elegans , Drug Resistance , Ivermectin , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/drug effects , Anthelmintics/pharmacology , Drug Resistance/genetics , Ivermectin/pharmacology , Alleles , Genetic Fitness/drug effects , Albendazole/pharmacology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Tubulin/genetics , Tubulin/metabolism , Selection, Genetic
11.
Cell Res ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565654
12.
Proc Natl Acad Sci U S A ; 121(19): e2313568121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38648470

ABSTRACT

United States (US) Special Operations Forces (SOF) are frequently exposed to explosive blasts in training and combat, but the effects of repeated blast exposure (RBE) on SOF brain health are incompletely understood. Furthermore, there is no diagnostic test to detect brain injury from RBE. As a result, SOF personnel may experience cognitive, physical, and psychological symptoms for which the cause is never identified, and they may return to training or combat during a period of brain vulnerability. In 30 active-duty US SOF, we assessed the relationship between cumulative blast exposure and cognitive performance, psychological health, physical symptoms, blood proteomics, and neuroimaging measures (Connectome structural and diffusion MRI, 7 Tesla functional MRI, [11C]PBR28 translocator protein [TSPO] positron emission tomography [PET]-MRI, and [18F]MK6240 tau PET-MRI), adjusting for age, combat exposure, and blunt head trauma. Higher blast exposure was associated with increased cortical thickness in the left rostral anterior cingulate cortex (rACC), a finding that remained significant after multiple comparison correction. In uncorrected analyses, higher blast exposure was associated with worse health-related quality of life, decreased functional connectivity in the executive control network, decreased TSPO signal in the right rACC, and increased cortical thickness in the right rACC, right insula, and right medial orbitofrontal cortex-nodes of the executive control, salience, and default mode networks. These observations suggest that the rACC may be susceptible to blast overpressure and that a multimodal, network-based diagnostic approach has the potential to detect brain injury associated with RBE in active-duty SOF.


Subject(s)
Blast Injuries , Military Personnel , Humans , Blast Injuries/diagnostic imaging , Adult , Male , United States , Magnetic Resonance Imaging , Female , Positron-Emission Tomography , Cognition/physiology , Brain/diagnostic imaging , Brain/metabolism , Young Adult
13.
mBio ; 15(4): e0032624, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38441028

ABSTRACT

Adult females of reproductive age develop greater antibody responses to inactivated influenza vaccines (IIV) than males. How sex, age, and sex steroid concentrations impact B cells and durability of IIV-induced immunity and protection over 4 months post-vaccination (mpv) was analyzed. Vaccinated adult females had greater germinal center B cell and plasmablast frequencies in lymphoid tissues, higher neutralizing antibody responses 1-4 mpv, and better protection against live H1N1 challenge than adult males. Aged mice, regardless of sex, had reduced B cell frequencies, less durable antibody responses, and inferior protection after challenge than adult mice, which correlated with diminished estradiol among aged females. To confirm that greater IIV-induced immunity was caused by sex hormones, four core genotype (FCG) mice were used, in which the testes-determining gene, Sry, was deleted from chromosome Y (ChrY) and transferred to Chr3 to separate gonadal sex (i.e., ovaries or testes) from sex chromosome complement (i.e., XX or XY complement). Vaccinated, gonadal female FCG mice (XXF and XYF) had greater numbers of B cells, higher antiviral antibody titers, and reduced pulmonary virus titers following live H1N1 challenge than gonadal FCG males (XYM and XXM). To establish that lower estradiol concentrations cause diminished immunity, adult and aged females received either a placebo or estradiol replacement therapy prior to IIV. Estradiol replacement significantly increased IIV-induced antibody responses and reduced morbidity after the H1N1 challenge among aged females. These data highlight that estradiol is a targetable mechanism mediating greater humoral immunity following vaccination among adult females.IMPORTANCEFemales of reproductive ages develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection against influenza were mediated by estradiol signaling in B cells. Using diverse mouse models ranging from advanced-age mice to transgenic mice that separate sex steroids from sex chromosome complement, those mice with greater concentrations of estradiol consistently had greater numbers of antibody-producing B cells in lymphoid tissue, higher antiviral antibody titers, and greater protection against live influenza virus challenge. Treatment of aged female mice with estradiol enhanced vaccine-induced immunity and protection against disease, suggesting that estradiol signaling in B cells is critical for improved vaccine outcomes in females.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Male , Animals , Mice , Female , Humans , Estradiol , Antibodies, Viral , Germinal Center , Vaccination , Mice, Transgenic , Vaccines, Inactivated , Antiviral Agents
14.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496420

ABSTRACT

Bacteria can tolerate antibiotics despite lacking the genetic components for resistance. The prevailing notion is that tolerance results from depleted cellular energy or cell dormancy. In contrast to this view, many cells in the tolerant population of Escherichia coli can exhibit motility - a phenomenon that requires cellular energy, specifically, the proton-motive force (PMF). As these motile-tolerant cells are challenging to isolate from the heterogeneous tolerant population, their survival mechanism is unknown. Here, we discovered that motile bacteria segregate themselves from the tolerant population under micro-confinement, owing to their unique ability to penetrate micron-sized channels. Single-cell measurements on the motile-tolerant population showed that the cells retained a high PMF, but they did not survive through active efflux alone. By utilizing growth assays, single-cell fluorescence studies, and chemotaxis assays, we showed that the cells survived by dynamically inhibiting the function of existing porins in the outer membrane. A drug transport model for porin-mediated intake and efflux pump-mediated expulsion suggested that energetic tolerant cells withstand antibiotics by constricting their porins. The novel porin adaptation we have uncovered is independent of gene expression changes and may involve electrostatic modifications within individual porins to prevent extracellular ligand entry.

15.
Lancet Diabetes Endocrinol ; 12(4): 257-266, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437850

ABSTRACT

BACKGROUND: Although some male patients with congenital hypogonadotropic hypogonadism (CHH) undergo spontaneous reversal following treatment, predictors of reversal remain elusive. We aimed to assemble the largest cohort of male patients with CHH reversal to date and identify distinct classes of reversal. METHODS: This multicentre cross-sectional study was conducted in six international CHH referral centres in Brazil, Finland, France, Italy, the UK, and the USA. Adult men with CHH (ie, absent or incomplete spontaneous puberty by age 18 years, low serum testosterone concentrations, and no identifiable cause of hypothalamic-pituitary-gonadal [HPG] axis dysfunction) were eligible for inclusion. CHH reversal was defined as spontaneous recovery of HPG axis function off treatment. Centres provided common data elements on patient phenotype, clinical assessment, and genetics using a structured, harmonised data collection form developed by COST Action BM1105. Latent class mixture modelling (LCMM) was applied to establish whether at least two distinct classes of reversal could be identified and differentially predicted, and results were compared with a cohort of patients without CHH reversal to identify potential predictors of reversal. The primary outcome was the presence of at least two distinct classes of reversal. FINDINGS: A total of 87 male patients with CHH reversal and 108 without CHH reversal were included in the analyses. LCMM identified two distinct reversal classes (75 [86%] in class 1 and 12 [14%] in class 2) on the basis of mean testicular volume, micropenis, and serum follicle-stimulating hormone (FSH) concentration. Classification probabilities were robust (0·998 for class 1 and 0·838 for class 2) and modelling uncertainty was low (entropy 0·90). Compared with class 1, patients in class 2 had significantly larger testicular volume (p<0·0001), no micropenis, and higher serum FSH concentrations (p=0·041), consistent with the Pasqualini syndrome (fertile eunuch) subtype of CHH. Patients without CHH reversal were more likely to have anosmia (p=0·016), cryptorchidism (p=0·0012), complete absence of puberty (testicular volume <4 cm³; p=0·0016), and two or more rare genetic variants (ie, oligogenicity; p=0·0001). Among patients who underwent genetic testing, no patients (of 75) with CHH reversal had a rare pathogenic ANOS1 variant compared with ten (11%) of 95 patients without CHH reversal. Individuals with CHH reversal had a significantly higher rate of rare variants in GNRHR than did those without reversal (nine [12%] of 75 vs three [3%] of 95; p=0·025). INTERPRETATION: Applying LCMM to a large cohort of male patients with CHH reversal uncovered two distinct classes of reversal. Genetic investigation combined with careful clinical phenotyping could help surveillance of reversal after withdrawing treatment, representing the first tailored management approach for male patients with this rare endocrine disorder. FUNDING: National Institutes of Health National Center for Advancing Translational Sciences; Ministry of Health, Rome, Italy; Ministry of University, Rome, Italy; National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development; and the Josiah Macy Jr Foundation. TRANSLATION: For the Italian translation of the abstract see Supplementary Materials section.


Subject(s)
Genital Diseases, Male , Hypogonadism , Penis/abnormalities , United States , Child , Adult , Humans , Male , Adolescent , Cross-Sectional Studies , Hypogonadism/genetics , Hypogonadism/drug therapy , Follicle Stimulating Hormone/therapeutic use
16.
Neurobiol Learn Mem ; 210: 107903, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403011

ABSTRACT

Formation of long-term memories requires learning-induced changes in both transcription and translation. Epitranscriptomic modifications of RNA recently emerged as critical regulators of RNA dynamics, whereby adenosine methylation (m6A) regulates translation, mRNA stability, mRNA localization, and memory formation. Prior work demonstrated a pro-memory phenotype of m6A, as loss of m6A impairs and loss of the m6A/m demethylase FTO improves memory formation. Critically, these experiments focused exclusively on aversive memory tasks and were only performed in male mice. Here we show that the task type and sex of the animal alter effects of m6A on memory, whereby FTO-depletion impaired object location memory in male mice, in contrast to the previously reported beneficial effects of FTO depletion on aversive memory. Additionally, we show that female mice have no change in performance after FTO depletion, demonstrating that sex of the mouse is a critical variable for understanding how m6A contributes to memory formation. Our study provides the first evidence for FTO regulation of non-aversive spatial memory and sexspecific effects of m6A, suggesting that identification of differentially methylated targets in each sex and task will be critical for understanding how epitranscriptomic modifications regulate memory.


Subject(s)
Adenosine , RNA , Male , Female , Animals , Mice , RNA, Messenger/metabolism , Methylation , Adenosine/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
17.
Nutr Clin Pract ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316566

ABSTRACT

BACKGROUND: This study aimed to assess the prevalence of malnutrition according to Subjective Global Assessment (SGA), Mini Nutritional Assessment-Full Form (MNA-FF), and different combinations of the Global Leadership Initiative on Malnutrition (GLIM) criteria in older adults who are institutionalized, and the impact of malnutrition on 5-year mortality. METHODS: Nutrition status was assessed by the SGA, MNA-FF, and 15 GLIM criteria combinations. The Katz scale was used to assess the level of dependence. The SGA was considered the reference method, and the agreement (Kappa test), sensitivity, and specificity values were calculated for each GLIM criteria combination. The variables associated with 5-year mortality were assessed using multivariate logistic regression models. RESULTS: One hundred eleven participants (mean age: 81y; interquartile range: 76.0-87.0; 90.9% women) were included; the prevalence of malnutrition according to the SGA and MNA-FF were 49.5% (n = 55) and 8.1% (n = 9), respectively. The prevalence of malnutrition varied from 1.8% to 36.0% considering GLIM combinations. Eight GLIM criteria combinations had a fair agreement with SGA (κ: 0.21-0.40), and two had sensitivity >80%. Regarding mortality, 43 participants (38.7%) died within 5 years. Malnutrition according to the SGA (odds ratio [OR]: 2.82; 95% confidence interval [CI]: 1.06-7.46) and the Katz scale score (OR: 4.64; 95% CI:1.84-11.70) were independent predictors of mortality. CONCLUSION: The prevalence of malnutrition varied according to the assessment tools. Malnutrition diagnosed by the SGA, but not by the GLIM criteria or MNA-FF, was associated with 5-year mortality in older adults who were institutionalized.

18.
bioRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370666

ABSTRACT

Albendazole and ivermectin are the two most commonly co-administered anthelmintic drugs in mass-drug administration programs worldwide. Despite emerging resistance, we do not fully understand the mechanisms of resistance to these drugs nor the consequences of delivering them in combination. Albendazole resistance has primarily been attributed to variation in the drug target, a beta-tubulin gene. Ivermectin targets glutamate-gated chloride channel (GluCl) genes, but it is unknown whether these genes are involved in ivermectin resistance in nature. Using Caenorhabditis elegans, we defined the fitness costs associated with loss of the drug target genes singly or in combinations of the genes that encode GluCl subunits. We quantified the loss-of function effects on three traits: (i) multi-generational competitive fitness, (ii) fecundity, and (iii) development. In competitive fitness and development assays, we found that a deletion of the beta-tubulin gene ben-1 conferred albendazole resistance, but ivermectin resistance required loss of two GluCl genes (avr-14 and avr-15) or loss of three GluCl genes (avr-14, avr-15, and glc-1). The fecundity assays revealed that loss of ben-1 did not provide any fitness benefit in albendazole and that no GluCl deletion mutants were resistant to ivermectin. Next, we searched for evidence of multi-drug resistance across the three traits. Loss of ben-1 did not confer resistance to ivermectin, nor did loss of any single GluCl subunit or combination confer resistance to albendazole. Finally, we assessed the development of 124 C. elegans wild strains across six benzimidazoles and seven macrocyclic lactones to identify evidence of multi-drug resistance between the two drug classes and found a strong phenotypic correlation within a drug class but not across drug classes. Because each gene affects various aspects of nematode physiology, these results suggest that it is necessary to assess multiple fitness traits to evaluate how each gene contributes to anthelmintic resistance.

19.
J Biomech Eng ; 146(8)2024 08 01.
Article in English | MEDLINE | ID: mdl-38421341

ABSTRACT

Chronic hypoxia plays a central role in diverse pulmonary pathologies, but its effects on longitudinal changes in the biomechanical behavior of proximal pulmonary arteries remain poorly understood. Similarly, effects of normoxic recovery have not been well studied. Here, we report hypoxia-induced changes in composition, vasoactivity, and passive biaxial mechanics in the main branch pulmonary artery of male C57BL/6J mice exposed to 10% FiO2 for 1, 2, or 3 weeks. We observed significant changes in extracellular matrix, and consequently wall mechanics, as early as 1 week of hypoxia. While circumferential stress and stiffness returned toward normal values by 2-3 weeks of hypoxia, area fractions of cytoplasm and thin collagen fibers did not return toward normal until after 1 week of normoxic recovery. By contrast, elastic energy storage and overall distensibility remained reduced after 3 weeks of hypoxia as well as following 1 week of normoxic recovery. While smooth muscle and endothelial cell responses were attenuated under hypoxia, smooth muscle but not endothelial cell responses recovered following 1 week of subsequent normoxia. Collectively, these data suggest that homeostatic processes were unable to preserve or restore overall function, at least over a brief period of normoxic recovery. Longitudinal changes are critical in understanding large pulmonary artery remodeling under hypoxia, and its reversal, and will inform predictive models of vascular adaptation.


Subject(s)
Hypoxia , Pulmonary Artery , Mice , Animals , Male , Mice, Inbred C57BL , Hypoxia/pathology , Muscle, Smooth , Vascular Remodeling
20.
J Hered ; 115(4): 480-486, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38416051

ABSTRACT

Previous studies of canid population and evolutionary genetics have relied on high-quality domestic dog reference genomes that have been produced primarily for biomedical and trait mapping studies in dog breeds. However, the absence of highly contiguous genomes from other Canis species like the gray wolf and coyote, that represent additional distinct demographic histories, may bias inferences regarding interspecific genetic diversity and phylogenetic relationships. Here, we present single haplotype de novo genome assemblies for the gray wolf and coyote, generated by applying the trio-binning approach to long sequence reads generated from the genome of a female first-generation hybrid produced from a gray wolf and coyote mating. The assemblies were highly contiguous, with contig N50 sizes of 44.6 and 42.0 Mb for the wolf and coyote, respectively. Genome scaffolding and alignments between the two Canis assemblies and published dog reference genomes showed near complete collinearity, with one exception: a coyote-specific chromosome fission of chromosome 13 and fusion of the proximal portion of that chromosome with chromosome 8, retaining the Canis-typical haploid chromosome number of 2n = 78. We evaluated mapping quality for previous RADseq data from 334 canids and found nearly identical mapping quality and patterns among canid species and regional populations regardless of the genome used for alignment (dog, coyote, or gray wolf). These novel wolf and coyote genome reference assemblies will be important resources for proper and accurate inference of Canis demography, taxonomic evaluation, and conservation genetics.


Subject(s)
Coyotes , Genome , Genomics , Wolves , Animals , Coyotes/genetics , Wolves/genetics , Genomics/methods , Female , Hybridization, Genetic , Phylogeny , Dogs/genetics , Haplotypes , Chromosome Mapping , Canidae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...