Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 20(9): 2745-9, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20363625

ABSTRACT

A novel series of N-(3-fluoro-4-(2-substituted-thieno[3,2-b]pyridin-7-yloxy)phenyl)-1-phenyl-5-(trifluoromethyl)-1H-pyrazole-4-carboxamides targeting RON receptor tyrosine kinase was designed and synthesized. SAR study of the series allowed us to identify compounds possessing either inhibitory activity of RON kinase enzyme in the low nanomolar range with low residual activity against the closely related c-Met or potent dual inhibitory activity against RON and c-Met, with no significant activity against VEGFR2 in both cases.


Subject(s)
Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/chemistry , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Humans , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Rats , Receptor Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 19(23): 6552-6, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19854051

ABSTRACT

A series of N-(4-(6,7-disubstituted-quinolin-4-yloxy)-3-fluorophenyl)-2-oxo-3-phenylimidazolidine-1-carboxamides targeting c-Met and VEGFR2 tyrosine kinases was designed and synthesized. The compounds were potent against these two enzymes with IC(50) values in the low nanomolar range in vitro, possessed favorable pharmacokinetic profiles and showed high efficacy in vivo in several human tumor xenograft models in mice.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Humans , Mice , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Stereoisomerism , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 19(10): 2742-6, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19364644

ABSTRACT

Potent SAH analogues with constrained homocysteine units have been designed and synthesized as inhibitors of human DNMT enzymes. The five membered (2S,4S)-4-mercaptopyrrolidine-2-carboxylic acid, in 1a, was a good replacement for homocysteine, while the corresponding six-member counterpart was less active. Further optimization of 1a, changed the selectivity profile of these inhibitors. A Chloro substituent at the 2-position of 1a, compound 1d, retained potency against DNMT1, while N(6) alkylation, compound 7a, conserved DNMT3b2 activity. The concomitant substitutions of 1a at both 2- and N(6) positions reduced activity against both enzymes.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Homocysteine/analogs & derivatives , Pyrrolidines/chemical synthesis , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Homocysteine/chemical synthesis , Homocysteine/pharmacology , Humans , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 19(10): 2747-51, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19362833

ABSTRACT

The inhibitory activity of base-modified SAH analogues and the specificity of inhibiting human DNMT1 and DNMT3b2 enzymes was explored. The 6-amino group was essential while the 7-N of the adenine ring of SAH could be replaced by CH- without loss of activity against both enzymes. The introduction of small groups at the 2-position of the adenine moiety favors DNMT1 over DNMT3b2 inhibition whereas alkylation of the N(6)-amino moiety favors the inhibition of DNMT3b2 enzyme.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , S-Adenosylhomocysteine/chemical synthesis , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , S-Adenosylhomocysteine/chemistry , S-Adenosylhomocysteine/pharmacology , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 19(5): 1323-8, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19211249

ABSTRACT

A series of N-(3-fluoro-4-(2-arylthieno[3,2-b]pyridin-7-yloxy)phenyl)-2-oxo-3-phenylimidazolidine-1-carboxamides targeting c-Met and VEGFR2 tyrosine kinases was designed and synthesized. The compounds were potent against these two enzymes with IC(50) values in the low nanomolar range in vitro, possessed favorable pharmacokinetic profiles and showed high efficacy in vivo in several human tumor xenograft models in mice.


Subject(s)
Amides/chemistry , Imidazolidines/chemistry , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-met/administration & dosage , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Amides/pharmacology , Animals , Cell Line, Tumor , HCT116 Cells , Humans , Imidazolidines/pharmacology , Mice , Protein Kinase Inhibitors/pharmacology , Rats , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays/methods
7.
Bioorg Med Chem Lett ; 19(3): 644-9, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19114304

ABSTRACT

Analogues of the clinical compound MGCD0103 (A) were designed and synthesized. These compounds inhibit recombinant human HDAC1 with IC(50) values in the sub-micromolar range. In human cancer cells growing in culture these compounds induce hyperacetylation of histones, cause expression of the tumor suppressor protein p21(WAF1/CIP1), and inhibit cellular proliferation. Lead molecule of the series, compound 25 is metabolically stable, possesses favorable pharmacokinetic characteristics and is orally active in vivo in different mouse tumor xenograft models.


Subject(s)
Benzamides/pharmacology , Enzyme Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/pharmacology , Benzamides/chemical synthesis , Cell Line, Tumor , Cell Proliferation , Chemistry, Pharmaceutical/methods , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Drug Design , Enzyme Inhibitors/chemistry , Histone Deacetylase Inhibitors , Humans , Inhibitory Concentration 50 , Mice , Neoplasm Transplantation , Pyrimidines/chemical synthesis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...