Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-29, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37403335

ABSTRACT

A structural and spectroscopic study of 5-chloroorotic acid (5-ClOA) biomolecule was carried out by IR and FT-Raman and the results obtained were compared to those achieved in 5-fluoroorotic acid and 5-aminoorotic acid compounds. The structures of all possible tautomeric forms were determined using DFT and MP2 methods. To know the tautomer form present in the solid state, the crystal unit cell was optimized through dimer and tetramer forms in several tautomeric forms. The keto form was confirmed through an accurate assignment of all the bands. For this purpose, an additional improvement in the theoretical spectra was carried out using linear scaling equations (LSE) and polynomic equations (PSE) deduced from uracil molecule. Base pairs with uracil, thymine and cytosine nucleobases were optimized and compared to the natural Watson-Crick (WC) pairs. The counterpoise (CP) corrected interaction energies of the base pairs were also calculated. Three nucleosides were optimized based on 5-ClOA as nucleobase, and their corresponding WC pairs with adenosine. These modified nucleosides were inserted in DNA:DNA and RNA:RNA microhelices, which were optimized. The position of the -COOH group in the uracil ring of these microhelices interrupts the DNA/RNA helix formation. Because of the special characteristic of these molecules they can be used as antiviral drugs.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 41(10): 4444-4466, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35583120

ABSTRACT

Base pairs of 4-amino-3-nitrobenzonitrile (4A-3NBN) molecule with uracil, thymine and cytosine nucleobases were optimized and compared to natural Watson-Crick (WC) pairs. The slightly greater flexibility of the -NO2 group of 4A-3NBN than the N3-H group of the natural nucleobases together with a noticeable higher dipole moment of its pairs can facilitate disruption of the DNA/RNA helix formation. Several new mutagenic modified nucleosides with 4A-3NBN and 3-amino-2-nitrobenzonitrile (3A-2NBN) were proposed as antiviral prodrugs and their base pairs optimized. The special characteristics of these prodrugs appear appropriated for their clinical use. The counterpoise (CP) corrected interaction energies of the base pairs were calculated and compared to the natural ones. The M06-2X DFT method was used for this purpose. The molecular structure of 4A-3NBN was analyzed in detail and the crystal unit cell was simulated by a tetramer form and eight dimer forms. The performance of the B3LYP, X3LYP and M06-2X methods was tested on the vibrational wavenumbers in the monomer, dimer and tetramer forms of 4A-3NBN. The observed IR and Raman bands were assigned according to the optimum dimer II form determined by B3LYP and by the tetramer form calculated by M06-2X, which is the expected unit cell that forms the crystal net. The two best scaling procedures were used.Communicated by Ramaswamy H. Sarma.


Subject(s)
Nucleosides , Prodrugs , Models, Molecular , Spectrum Analysis, Raman , Spectroscopy, Fourier Transform Infrared , Base Pairing
3.
J Biomol Struct Dyn ; 38(18): 5443-5463, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31838954

ABSTRACT

This study focuses on the effects of the bromine atom on the molecular structure parameters in the main tautomeric forms of 5-bromouracil (5BrU), and as well, its effect on hydration and on the Watson-Crick (WC) pairs as compared to uracil molecule. The influence of the bromine atom was studied in several environments. The hydration effect on the molecular structure and energies of the main tautomeric forms of 5BrU was analyzed by considering a variable number of water molecules in explicit form up to 30 to simulate the first and second hydration shells. The 'mutagenic' 2-hydroxy-4-oxo (U2) enol tautomer of 5BrU, but not of uracil, was absolutely favored over the keto form in clusters with more than 20 water molecules. For all calculations, B3LYP and M06-2X Methods were used. The effect of the bromine atom when it was inserted into the natural and reverse WC pairs uridine-adenosine was also determined, and counterpoise (CP) corrected interaction energies were calculated. The effect of the bromine atom was analyzed in several DNA:RNA hybrid microhelices. Different backbone and helical parameters were calculated and compared. The bromine atom destabilizes its base pair, with a remarkable increase in the rise parameter (Dz) corresponding to the microhelix, and to a slight increase in the diameter (d). Molecular docking calculations were also carried out with 5BrU for targeted proteins associated with diabetes, hepatocellular carcinoma and breast and lung cancers. The molecular docking analysis confirms that the 5BrU molecule may play an important role as a promising inhibitor against breast cancer.Communicated by Ramaswamy H. Sarma.


Subject(s)
Bromouracil , DNA , Molecular Docking Simulation , RNA , Bromine , Bromouracil/chemistry , Humans
4.
J Agric Food Chem ; 65(24): 4905-4910, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28540726

ABSTRACT

The sorption and release of tyrosol and caffeic acid, two biophenolic antioxidants with known health benefits, in different insoluble cyclodextrin polymers have been studied. Cyclodextrin polymers were synthesized by cross-linking ß-cyclodextrin or 50:50 w/w nominal mixtures of α- and ß-cyclodextrins using either epichlorohydrin (EP) or toluene-2,4-diisocyanate (TDI) as cross-linking agents. An analogous sucrose polymer was prepared using EP as cross-linking reagent. Freundlich isotherms and isosteric heats of sorption for tyrosol and caffeic acid in the insoluble ß-cyclodextrin polymer cross-linked with epichlorohydrin at 50 °C were obtained and discussed. Finally, the release of tyrosol and caffeic acid has been studied from loaded polymer disks, the microstructures of which were characterized by mercury intrusion porosimetry. Caffeic acid shows greater affinity than tyrosol for the polymeric matrices as it presents a higher sorption and a lower and slower release. However, tyrosol has a higher isosteric heat of sorption for low coverages.


Subject(s)
Antioxidants/chemistry , Cellulose/chemistry , Cyclodextrins/chemistry , Phenols/chemistry , Adsorption , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...