Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomics ; 5(16): 4197-204, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16206326

ABSTRACT

Metabolic activation of inert chemicals to electrophilic intermediates has been correlated with the incidence and severity of cytotoxicity. The current studies have identified several proteins adducted by reactive metabolites of the lung toxicant, naphthalene. Proteins isolated from microsomal incubations of (14)C-naphthalene were separated by 2-DE, proteins were blotted to PVDF membranes and radioactive proteins were localized by storage phosphor analysis. Adducted proteins were isolated from complimentary gels and identified by peptide mass mapping. A total of 18 adducted proteins were identified including: protein disulfide isomerase precursor, ER-60 protease, alpha actin, mouse urinary proteins, and cytochrome b5 reductase. In supernatant fractions, protein disulfide isomerase, heat shock protein 70, and alpha-actin were key proteins to which reactive naphthalene metabolites were bound. All of the proteins adducted, with the exception of cytochrome b5 reductase were sulfhydryl rich. Although several of the proteins found to be adducted in these studies have also been shown to be adducted by other electrophiles, several others have not been reported as common targets of reactive metabolites. These studies provide a basis for both in situ and in vivo work designed to follow the fate and formation of reactive metabolite protein adducts.


Subject(s)
Naphthalenes/toxicity , Proteome/metabolism , Amino Acid Sequence , Animals , Carbon Radioisotopes , Electrophoresis, Gel, Two-Dimensional , Mice , Microsomes, Liver/metabolism , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Peptide Mapping , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
Chem Res Toxicol ; 18(5): 802-13, 2005 May.
Article in English | MEDLINE | ID: mdl-15892573

ABSTRACT

Airway epithelial cells are a susceptible site for injury by ambient air toxicants such as naphthalene that undergo P450-dependent metabolic activation. The metabolism of naphthalene in Clara cells to reactive intermediates that bind covalently to proteins correlates with cell toxicity. Although several proteins adducted by reactive naphthalene metabolites were identified in microsomal incubations, new methods that maintain the structural integrity of the lung are needed to examine protein targets. Therefore, we developed a method that involves inflation of the lungs via the trachea with medium containing (14)C-naphthalene followed by incubation in situ. The viability of this preparation is supported by maintenance of glutathione levels, rates of naphthalene metabolism, and exclusion of ethidium homodimer-1 from airway epithelium. Following in situ incubation, the levels of adduct per milligram of protein were measured in proteins obtained from bronchoalveolar lavage, epithelial cells, and remaining lung. The levels of adducted proteins obtained in lavage and epithelial cells were similar and were 20-fold higher than those in residual lung tissue. (14)C-Labeled adducted proteins were identified by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) and quadrupole-TOF MS/MS. Major adducted proteins include cytoskeletal proteins, proteins involved in folding and translocation, ATP synthase, extracellular proteins, redox proteins, and selenium binding proteins. We conclude that in situ incubation maintains structural integrity of the lung while allowing examination of reactive intermediate activation and interaction with target cell proteins of the lung. The proteins adducted and identified from in situ incubations were not the same proteins identified from microsomal incubations.


Subject(s)
Lung/metabolism , Microsomes/metabolism , Naphthalenes/metabolism , Proteins/metabolism , Animals , Carbon Radioisotopes , Carrier Proteins/metabolism , Cell Survival , Cytoskeletal Proteins/metabolism , Extracellular Matrix/metabolism , Glutathione/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Models, Biological , Oxidation-Reduction , Protein Conformation , Selenium-Binding Proteins , Uteroglobin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...