Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(13): 5966-5978, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38462977

ABSTRACT

Catalytic function in organometallic complexes is achieved by carefully selecting their central metals and ligands. In this study, the effects of a metal and a ligand on the kinetics and thermodynamics of hydrogen activation, hydricity degree of the hydride complex, and susceptibility to electronic oxidation in bioinspired NiFe complexes, [NiIIX FeII(Cl)(CO)Y]+ ([NiFe(Cl)(CO)]+; X = N,N'-diethyl-3,7-diazanonane-1,9-dithiolato and Y = 1,2-bis(diphenylphosphino)ethane), were investigated. The density functional theory calculations revealed that the following order thermodynamically favored hydrogen activation: [NiFe(CO)]2+ > [NiRu(CO)]2+ > [NiFe(CNMe)]2+ ∼ [PdRu(CO)]2+ ∼ [PdFe(CO)]2+ ≫ [NiFe(NCS)]+. Moreover, the reverse order thermodynamically favored the hydricity degree.

2.
Phys Chem Chem Phys ; 25(11): 7881-7892, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36857716

ABSTRACT

The intermittent increase in CO2 concentration in the atmosphere is a serious problem that contributes to climate change; the combustion of fossil fuels produces the majority of CO2, and technology is needed to capture it efficiently. Various CO2 capture materials have been developed so far. Membrane separation, in particular, has an advantage over other capture technologies due to its ease of use. Poly(dimethylsiloxane) (PDMS) has been widely used as a membrane material for CO2 capture because of its high gas permeability. However, despite their high CO2 permeance, PDMS membranes are still in their infancy, especially regarding CO2 selectivity due to the weak interaction between CO2 and PDMS. Here we evaluated the CO2 interaction with the PDMS chain at the atomic scale and attempted to improve the CO2 affinity of the PDMS chain using density functional theory (DFT). Specifically, we substituted elements in the Si-O framework with other elements and substituted the methyl groups with other chemical groups, and incorporated metallic elements such as Mg and Ti. All the chemical modifications by main group elements resulted in physisorption, but chemisorption of CO2 was observed in PDMS incorporating metallic elements. Since several modes of CO2 binding were observed in PDMS with incorporated metal elements, the binding enthalpy and binding mode were analyzed. As a result of various chemical modifications, it was found that introducing earth metal elements into PDMS was the most effective way to enhance the interaction between PDMS and CO2.

3.
J Chem Theory Comput ; 18(3): 1619-1632, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35191695

ABSTRACT

Hydrated transition metal ions are prototypical systems that can be used to model properties of transition metals in complex chemical environments. These seemingly simple systems present challenges for computational chemistry and are thus crucial in evaluations of quantum chemical methods for spin-state and redox energetics. In this work, we explore the applicability of the domain-based pair natural orbital implementation of coupled cluster (DLPNO-CC) theory to the calculation of ionization energies and redox potentials for hydrated ions of all first transition row (3d) metals in the 2+/3+ oxidation states, in connection with various solvation approaches. In terms of model definition, we investigate the construction of a minimally explicitly hydrated quantum cluster with a first and second hydration layer. We report on the convergence with respect to the coupled cluster expansion and the PNO space, as well as on the role of perturbative triple excitations. A recent implementation of the conductor-like polarizable continuum model (CPCM) for the DLPNO-CC approach is employed to determine self-consistent redox potentials at the coupled cluster level. Our results establish conditions for the convergence of DLPNO-CCSD(T) energetics and stress the absolute necessity to explicitly consider the second solvation sphere even when CPCM is used. The achievable accuracy for redox potentials of a practical DLPNO-based approach is, on average, 0.13 V. Furthermore, multilayer approaches that combine a higher-level DLPNO-CCSD(T) description of the first solvation sphere with a lower-level description of the second solvation layer are investigated. The present work establishes optimal and transferable methodological choices for employing DLPNO-based coupled cluster theory, the associated CPCM implementation, and cost-efficient multilayer derivatives of the approach for open-shell transition metal systems in complex environments.

4.
Dalton Trans ; 51(1): 312-323, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34897337

ABSTRACT

Hydrogen fuel is a promising alternative to fossil fuel. Therefore, efficient hydrogen production is crucial to elucidate the distinctive reactivities of metal hydride species, the intermediates formed during hydrogen activation/evolution in the presence of organometallic catalysts. This study uses density functional theory (DFT) to investigate the isomerizations and reactivities of three nickel-iron (NiFe) hydride isomers synthesized by mimicking the active center of NiFe hydrogenase. Hydride transfer within these complexes, rather than a chemical reaction between the complexes, converts the three hydrides internally. Their reactivities, including their electron-transfer, hydride-transfer and proton-transfer reactions, are investigated. The bridging hydride complex exhibits a higher energy level for the highest occupied molecular orbital (HOMO) than the terminal hydride during the electron-transfer reaction. This energy level indicates that the bridging hydride is more easily oxidized and is more susceptible to electron transfer than the terminal hydride. Regarding the hydride-transfer reaction between the NiFe hydride complex and methylene blue, the terminal hydrides exhibit larger hydricity and lower reaction barriers than the bridging hydride complexes. The results of energy decomposition analysis indicate that the structural deformation energy of the terminal hydride in the transition state is smaller than that of the bridging hydride complex, which lowers the reaction barrier of hydride transfer in the terminal hydride. To produce hydrogen, the rate-determining step is represented by the protonation of the hydride, and the terminal hydrides are thermodynamically and kinetically superior to the bridging ones. The differences in the reactivities of the hydride isomers ensure the precise control of hydrogen, and the theoretical calculations can be applied to design catalysts for hydrogen activation/production.


Subject(s)
Density Functional Theory , Hydrogen/metabolism , Hydrogenase/metabolism , Iron/metabolism , Nickel/metabolism , Electron Transport , Hydrogen/chemistry , Hydrogenase/chemistry , Iron/chemistry , Molecular Conformation , Nickel/chemistry
5.
RSC Adv ; 11(60): 37713-37725, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-35498088

ABSTRACT

Triethanolamine (TEOA) has been used for the photocatalytic reduction of CO2, and the experimental studies have demonstrated that the TEOA increases the catalytic efficiency. In addition, the formation of a carbonate complex has been confirmed in the Re photocatalytic system where DMF and TEOA are used as solvents. In this study, we survey the reaction pathways of the photocatalytic conversions of CO2 to CO + H2O and CO2 to CO + HCO3 - by fac-Re(bpy)(CO)3Br in the presence of TEOA using density functional theory (DFT) and domain-based local pair natural orbital coupled cluster approach, DLPNO-CCSD(T). Under light irradiation, the solvent-coordinated Re complex is first reduced to form a monoalkyl carbonate complex in the doublet pathway. This doublet pathway is kinetically advantageous over the singlet pathway. To reduce carbon dioxide, the Re complex needs to be reduced by two electrons. The second electron reduction occurs after the monoalkyl carbonate complex is protonated. The second reduction involves the dissociation of the monoalkyl carbonate ligand, and the dissociated ligand recombines the Re center via carbon to generate Re-COOH species, which further reacts with CO2 to generate tetracarbonyl complex and HCO3 -. The two-electron reduced ligand-free Re complex converts CO2 to CO and H2O. The pathways leading to H2O formation have lower barriers than the pathways leading to HCO3 - formation, but their portion of formation must depend on proton concentration.

6.
RSC Adv ; 11(45): 28420-28432, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-35480737

ABSTRACT

Hydrogen is a clean fuel alternative to fossil fuels, and it is vital to develop catalysts for its efficient activation and production. We investigate the reaction mechanism of H2 activation in an aqueous solution by the recently developed NiFe complex (Ogo et al. Sci. Adv. 2020, 6, eaaz8181) using density functional theory (DFT) calculation. Our computational results showed that H2 is activated using frustrated Lewis pair. That is, H2 binds to the Fe site of the NiFe complex, acting as a Lewis acid, while the added buffer, acting as Lewis base, abstracts protons to form a hydride complex. Furthermore, the higher basicity in the proton abstraction reaction characterises reaction more exergonic and lowers the reaction barrier. In addition, in the proton abstraction by the water molecule, the reaction barrier was lowered when anion such as Cl- is in the vicinity of the water. Understanding the chemical species that contribute to the catalytic process in cooperation with the metal catalyst at the atomic level should help to maximise the function of the catalyst.

7.
Sci Adv ; 6(24): eaaz8181, 2020 06.
Article in English | MEDLINE | ID: mdl-32577514

ABSTRACT

The study of hydrogenase enzymes (H2ases) is necessary because of their importance to a future hydrogen energy economy. These enzymes come in three distinct classes: [NiFe] H2ases, which have a propensity toward H2 oxidation; [FeFe] H2ases, which have a propensity toward H2 evolution; and [Fe] H2ases, which catalyze H- transfer. Modeling these enzymes has so far treated them as different species, which is understandable given the different cores and ligand sets of the natural molecules. Here, we demonstrate, using x-ray analysis and nuclear magnetic resonance, infrared, Mössbauer spectroscopies, and electrochemical measurement, that the catalytic properties of all three enzymes can be mimicked with only three isomers of the same NiFe complex.

8.
Inorg Chem ; 59(2): 1014-1028, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31898897

ABSTRACT

One of the challenges in utilizing hydrogen gas (H2) as a sustainable fossil fuel alternative is the inhibition of H2 oxidation by carbon monoxide (CO), which is involved in the industrial production of H2 sources. To solve this problem, a catalyst that selectively oxidizes either CO or H2 or one that co-oxidizes H2 and CO is needed. Recently, a NiIr catalyst [NiIICl(X)IrIIICl(η5-C5Me5)], (X = N,N'-dimethyl-3,7-diazanonane-1,9-dithiolate), which efficiently and selectively oxidizes either H2 or CO depending on the pH, has been developed (Angew. Chem. Int. Ed. 2017, 56, 9723-9726). In the present work, density functional theory (DFT) calculations are employed to elucidate the pH-dependent reaction mechanisms of H2 and CO oxidation catalyzed by this NiIr catalyst. During H2 oxidation, our calculations suggest that dihydrogen binds to the Ir center and generates an Ir(III)-dihydrogen complex, followed by subsequent isomerization to an Ir(V)-dihydride species. Then, a proton is abstracted by a buffer base, CH3COO-, resulting in the formation of a hydride complex. The catalytic cycle completes with electron transfer from the hydride complex to a protonated 2,6-dichlorobenzeneindophenol (DCIP) and a proton transfer from the oxidized hydride complex to a buffer base. The CO oxidation mechanism involves three distinct steps, i.e., (1) formation of a metal carbonyl complex, (2) formation of a metallocarboxylic acid, and (3) conversion of the metallocarboxylic acid to a hydride complex. The formation of the metallocarboxylic acid involves nucleophilic attack of OH- to the carbonyl-C followed by a large structural change with concomitant cleavage of the Ir-S bond and rotation of the COOH group along the NiIr axis. During the conversion of the metallocarboxylic acid to the hydride complex, intramolecular proton transfer followed by removal of CO2 leads to the formation of the hydride complexes. In addition, the barrier heights for the binding of small molecules (H2, OH-, H2O, and CO) to Ir were calculated, and the results indicated that dissociation from Ir is a faster process than the binding of H2O and H2. These calculations indicate that H2 oxidation is inhibited by CO and OH- and thus prefers acidic conditions. In contrast, the CO oxidation reactions occur more favorably under basic conditions, as the formation of the metallocarboxylic acid involves OH- attack to a carbonyl-C and the binding of OH- to Ni largely stabilizes the triplet spin state of the complex. Taken together, these calculations provide a rationale for the experimentally observed pH-dependent, selective oxidations of H2 and CO.

9.
J Chem Theory Comput ; 12(5): 2272-84, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27065224

ABSTRACT

The calculation of redox potentials involves large energetic terms arising from gas phase ionization energies, thermodynamic contributions, and solvation energies of the reduced and oxidized species. In this work we study the performance of a wide range of wave function and density functional theory methods for the prediction of ionization energies and aqueous one-electron oxidation potentials of a set of 19 organic molecules. Emphasis is placed on evaluating methods that employ the computationally efficient local pair natural orbital (LPNO) approach, as well as several implementations of coupled cluster theory and explicitly correlated F12 methods. The electronic energies are combined with implicit solvation models for the solvation energies. With the exception of MP2 and its variants, which suffer from enormous errors arising at least partially from the poor Hartree-Fock reference, ionization energies can be systematically predicted with average errors below 0.1 eV for most of the correlated wave function based methods studies here, provided basis set extrapolation is performed. LPNO methods are the most efficient way to achieve this type of accuracy. DFT methods show in general larger errors and suffer from inconsistent behavior. The only exception is the M06-2X functional which is found to be competitive with the best LPNO-based approaches for ionization energies. Importantly, the limiting factor for the calculation of accurate redox potentials is the solvation energy. The errors in the predicted solvation energies by all continuum solvation models tested in this work dominate the final computed reduction potential, resulting in average errors typically in excess of 0.3 V and hence obscuring the gains that arise from choosing a more accurate electronic structure method.

10.
J Phys Chem A ; 119(18): 4191-9, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25706681

ABSTRACT

The reaction mechanism of photochemical ring opening and closing transformation was investigated for diarylethene (DAE), which works as a molecular switch and photodevice. Spin-flip time-dependent density functional theory is employed to map the potential energy surfaces and to elucidate the photochemical mechanism of three isomers (normal, inverse, and mixed types) of 1,2-dithienylethene, a model DAE. The potential energy characteristics including the minimum-energy conical intersection reveals the origin of different product preferences of the three isomers. For the normal type, the excited state from either closed or open form reaches the same conical intersection that gives preferentially the closed product. The inverse type preferentially gives the closed product. The mixed type has two pathways that are easily convertible, and both open and closed reactants give both open and closed products.

11.
J Chem Phys ; 141(15): 154303, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25338892

ABSTRACT

We report reaction paths starting from N((2)D) + H2O for doublet spin states, D0 and D1. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H2ON → H-O(H)N → H-HON → NO((2)Π) + H2, (2) cis-HNOH → HNO-H → H-HNO → NO + H2, (3) H2NO → H-HNO → HNO-H → trans-HNOH, are confirmed on the D0 surface.

12.
J Chem Phys ; 140(24): 244310, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24985641

ABSTRACT

Photodissociation pathways of nitromethane following π → π(*) electronic excitation are reported. The potential energy surfaces for four lowest singlet states are explored, and structures of many intermediates, dissociation limits, transition states, and minimum energy conical intersections were determined using the automated searching algorism called the global reaction route mapping strategy. Geometries are finally optimized at CASSCF(14e,11o) level and energies are computed at CAS(14o,11e)PT2 level. The calculated preferable pathways and important products qualitatively explain experimental observations. The major photodissociation product CH3 and NO2 ((2)B2) is formed by direct dissociation from the S1 state. Important pathways involving S1 and S0 states for production of various dissociation products CH3NO + O ((1)D), CH3O(X(2)E) + NO (X(2)Π), CH2NO + OH, and CH2O + HNO, as well as various isomerization pathways have been identified. Three roaming processes also have been identified: the O atom roaming in O dissociation from CH3NO2, the OH radical roaming in OH dissociation from CH2N(O)(OH), and the NO roaming in NO dissociation from CH3ONO.

13.
Acc Chem Res ; 47(9): 2731-8, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-24841937

ABSTRACT

Conspectus The development of more efficient and more accurate ways to represent reactive potential energy surfaces is a requirement for extending the simulation of large systems to more complex systems, longer-time dynamical processes, and more complete statistical mechanical sampling. One way to treat large systems is by direct dynamics fragment methods. Another way is by fitting system-specific analytic potential energy functions with methods adapted to large systems. Here we consider both approaches. First we consider three fragment methods that allow a given monomer to appear in more than one fragment. The first two approaches are the electrostatically embedded many-body (EE-MB) expansion and the electrostatically embedded many-body expansion of the correlation energy (EE-MB-CE), which we have shown to yield quite accurate results even when one restricts the calculations to include only electrostatically embedded dimers. The third fragment method is the electrostatically embedded molecular tailoring approach (EE-MTA), which is more flexible than EE-MB and EE-MB-CE. We show that electrostatic embedding greatly improves the accuracy of these approaches compared with the original unembedded approaches. Quantum mechanical fragment methods share with combined quantum mechanical/molecular mechanical (QM/MM) methods the need to treat a quantum mechanical fragment in the presence of the rest of the system, which is especially challenging for those parts of the rest of the system that are close to the boundary of the quantum mechanical fragment. This is a delicate matter even for fragments that are not covalently bonded to the rest of the system, but it becomes even more difficult when the boundary of the quantum mechanical fragment cuts a bond. We have developed a suite of methods for more realistically treating interactions across such boundaries. These methods include redistributing and balancing the external partial atomic charges and the use of tuned fluorine atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy. Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an anchor points reactive potential. Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.

14.
J Chem Theory Comput ; 9(1): 33-45, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23704835

ABSTRACT

The polarized molecular orbital (PMO) method, a neglect-of-diatomic-differential-overlap (NDDO) semiempirical molecular orbital method previously parameterized for systems composed of O and H, is here extended to carbon. We modified the formalism and optimized all the parameters in the PMO Hamiltonian by using a genetic algorithm and a database containing both electrostatic and energetic properties; the new parameter set is called PMO2. The quality of the resulting predictions is compared to results obtained by previous NDDO semiempirical molecular orbital methods, both including and excluding dispersion terms. We also compare the PMO2 properties to SCC-DFTB calculations. Within the class of semiempirical molecular orbital methods, the PMO2 method is found to be especially accurate for polarizabilities, atomization energies, proton transfer energies, noncovalent complexation energies, and chemical reaction barrier heights and to have good across-the-board accuracy for a range of other properties, including dipole moments, partial atomic charges, and molecular geometries.

15.
J Chem Phys ; 138(13): 134111, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23574212

ABSTRACT

Time-dependent density functional theory (TDDFT) holds great promise for studying photochemistry because of its affordable cost for large systems and for repeated calculations as required for direct dynamics. The chief obstacle is uncertain accuracy. There have been many validation studies, but there are also many formulations, and there have been few studies where several formulations were applied systematically to the same problems. Another issue, when TDDFT is applied with only a single exchange-correlation functional, is that errors in the functional may mask successes or failures of the formulation. Here, to try to sort out some of the issues, we apply eight formulations of adiabatic TDDFT to the first valence excitations of ten molecules with 18 density functionals of diverse types. The formulations examined are linear response from the ground state (LR-TDDFT), linear response from the ground state with the Tamm-Dancoff approximation (TDDFT-TDA), the original collinear spin-flip approximation with the Tamm-Dancoff (TD) approximation (SF1-TDDFT-TDA), the original noncollinear spin-flip approximation with the TDA approximation (SF1-NC-TDDFT-TDA), combined self-consistent-field (SCF) and collinear spin-flip calculations in the original spin-projected form (SF2-TDDFT-TDA) or non-spin-projected (NSF2-TDDFT-TDA), and combined SCF and noncollinear spin-flip calculations (SF2-NC-TDDFT-TDA and NSF2-NC-TDDFT-TDA). Comparing LR-TDDFT to TDDFT-TDA, we observed that the excitation energy is raised by the TDA; this brings the excitation energies underestimated by full linear response closer to experiment, but sometimes it makes the results worse. For ethylene and butadiene, the excitation energies are underestimated by LR-TDDFT, and the error becomes smaller making the TDA. Neither SF1-TDDFT-TDA nor SF2-TDDFT-TDA provides a lower mean unsigned error than LR-TDDFT or TDDFT-TDA. The comparison between collinear and noncollinear kernels shows that the noncollinear kernel drastically reduces the spin contamination in the systems considered here, and it makes the results more accurate than collinear spin-flip TDDFT for functionals with a low percentage of Hartree-Fock exchange and sometimes for functionals with a higher percentage of Hartree-Fock exchange, but it yields less accurate results than ground-state TDDFT.

16.
J Phys Chem A ; 117(1): 169-73, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23240935

ABSTRACT

Using quantum chemical approximations to understand and predict complex transition metal chemistry, such as catalytic processes and materials properties, is an important activity in modern computational chemistry. High-level theory can sometimes provide high-precision benchmarks for systems containing transition metals, and these benchmarks can be used to understand the reliability of less expensive quantum chemical approximations that are applicable to complex systems. Here, we studied the ionization potential energy of Fe and FeC and the bond dissociation energies of FeC and FeC(+) by 15 density functional approximations: M05, M06, M06-L, ωB97, ωB97X, ωB97X-D, τ-HCTHhyb, BLYP, B3LYP, M08-HX, M08-SO, SOGGA11, SOGGA11-X, M11, and M11-L. All of the functionals predict the correct spin state as the ground state of neutral iron atom, but five of them predict the wrong spin state for Fe(+). In the final analysis, four functionals, namely M11-L, τ-HCTHhyb, SOGGA11, and M06-L, have small mean unsigned errors when averaged over two bond dissociation energies and two ionization potentials. In fact, the results show that M11-L gives the smallest averaged mean unsigned error, i.e., M11-L is the most reliable density functional for these iron carbide systems among those studied.

17.
J Chem Theory Comput ; 9(3): 1381-93, 2013 Mar 12.
Article in English | MEDLINE | ID: mdl-26587600

ABSTRACT

We add higher-order electronic polarization effects to the molecular tailoring approach (MTA) by embedding each fragment in background charges as in combined quantum mechanical and molecular mechanical (QM/MM) methods; the resulting method considered here is called electrostatically embedded MTA (EE-MTA). We compare EE-MTA to MTA for a test peptide, Ace-(Ala)20-NMe, and we find that including background charges (embedding charges) greatly improves the performance. The fragmentation is performed on the basis of amino acids as monomers, and several sizes of fragment are tested. The fragments are capped with either hydrogen cap atoms or tuned fluorine cap atoms. The effective core potential of the tuned fluorine cap atom is optimized so as to reproduce the proton affinity for seven types of tetrapeptide, and the proton affinity calculated with the tuned cap atom shows a lower mean unsigned error than that obtained by using a hydrogen cap atom. In the application to the test peptide, these generically tuned cap atoms show better performance compared with the hydrogen cap atom for both the electronic energy and the energy difference between an α helix and a ß sheet (in the latter case, 1.0% vs 2.7% when averaged over three sizes of fragments and two locations for cut bonds). Also, we compared the accuracy of several charge redistribution schemes, and we find that the results are not particularly sensitive to these choices for the Ace-(Ala)20-NMe peptide. We also illustrate the dependence on the choice of charge model for the embedding charges, including both fixed embedding charges and embedding charges that depend on conformation.

18.
J Chem Phys ; 137(24): 244104, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23277925

ABSTRACT

We report a test of 30 density functionals, including several recent ones, for their predictions of 69 singlet-to-singlet excitation energies of 11 molecules. The reference values are experimental results collected by Caricato et al. for 30 valence excitations and 39 Rydberg excitations. All calculations employ time-dependent density functional theory in the adiabatic, linear-response approximation. As far as reasonable, all of the assignments are performed by essentially the same protocol as used by Caricato et al., and this allows us to merge our mean unsigned errors (MUEs) with the ones they calculated for both density functional and wave function methods. We find 21 of the 30 density functionals calculated here have smaller MUEs for the 30 valence states than what they obtained (0.47 eV) for the state-of-the-art EOM-CCSD wave function. In contrast, for all of density functionals the MUE for 39 Rydberg states is larger than that (0.11 eV) of EOM-CCSD. Merging the 30 density functionals calculated here with the 26 calculated by Caricato et al. makes a set of 56 density functionals. Averaging the unsigned errors over both the valence excitations and the Rydberg excitations, none of the 56 density functionals shows a lower mean unsigned error than that (0.27 eV) of EOM-CCSD. Nevertheless, two functionals are successful in having an overall mean unsigned error of 0.30 eV, and another nine are moderately successful in having overall mean unsigned errors in the range 0.32-0.36 eV. Successful or moderately successful density functionals include seven hybrid density functionals with 41% to 54% Hartree-Fock exchange, and four range-separated hybrid density functionals in which the percentage of Hartree-Fock exchange increases from 0% to 19% at small interelectronic separation to 65%-100% at long range.

19.
J Chem Phys ; 135(8): 084107, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21895159

ABSTRACT

Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred.


Subject(s)
Models, Theoretical , Algorithms , Thermodynamics
20.
J Chem Theory Comput ; 5(10): 2809-21, 2009 Oct 13.
Article in English | MEDLINE | ID: mdl-26631793

ABSTRACT

We present a molecular mechanical force field for polypeptides and proteins involving the electronic polarization effect described with the charge response kernel. All of the electrostatic parameters for 20 amino acids are obtained by ab initio electronic structure calculations and combined with the AMBER99 force field. The refittings of dihedral angle parameters in the torsional potentials are performed so as to reproduce the ab initio optimized geometries and relative energies for the conformers of dipeptides. The present force field is applied to molecular dynamics simulation calculations of the extended alanine tetra and cyclic pentapeptides in aqueous solution. The infrared spectra are calculated in order to analyze the charge polarization effect on the spectral profiles.

SELECTION OF CITATIONS
SEARCH DETAIL
...