Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Vet Sci ; 7: 603622, 2020.
Article in English | MEDLINE | ID: mdl-33240967

ABSTRACT

Interferon lambda (IFN-λ) is an antiviral naturally produced in response to viral infections, with activity on cells of epithelial origin and located in the mucosal surfaces. This localized activity results in reduced toxicity compared to type I IFNs, whose receptors are ubiquitously expressed. IFN-λ has been effective in the therapy of respiratory viral infections, playing a crucial role in potentiating adaptive immune responses that initiate at mucosal surfaces. Human IFN-λ has polymorphisms that may cause differences in the interaction with the specific receptor in the human population. Interestingly, bovine IFN-λ3 has an in silico-predicted higher affinity for the human receptor than its human counterparts, with high identity with different human IFN-λ variants, making it a suitable antiviral therapeutic candidate for human health. Here, we demonstrate that a recombinant bovine IFN-λ (rbIFN-λ) produced in HEK-293 cells is effective in preventing SARS-CoV-2 infection of VERO cells, with an inhibitory concentration 50% (IC50) between 30 and 50 times lower than that of human type I IFN tested here (α2b and ß1a). We also demonstrated the absence of toxicity of rbIFN-λ in human PBMCs and the lack of proinflammatory activity on these cells. Altogether, our results show that rbIFN-λ is as an effective antiviral potentially suitable for COVID-19 therapy. Among other potential applications, rbIFN-λ could be useful to preclude virus dispersion to the lungs and/or to reduce transmission from infected people. Moreover, and due to the non-specific activity of this IFN, it can be potentially effective against other respiratory viruses that may be circulating together with SARS-CoV-2.

2.
Biotechnol Res Int ; 2013: 383646, 2013.
Article in English | MEDLINE | ID: mdl-23533783

ABSTRACT

Designing degenerate PCR primers for templates of unknown nucleotide sequence may be a very difficult task. In this paper, we present a new method to design degenerate primers, implemented in family-specific degenerate primer design (FAS-DPD) computer software, for which the starting point is a multiple alignment of related amino acids or nucleotide sequences. To assess their efficiency, four different genome collections were used, covering a wide range of genomic lengths: Arenavirus (10 × 10(4) nucleotides), Baculovirus (0.9 × 10(5) to 1.8 × 10(5) bp), Lactobacillus sp. (1 × 10(6) to 2 × 10(6) bp), and Pseudomonas sp. (4 × 10(6) to 7 × 10(6) bp). In each case, FAS-DPD designed primers were tested computationally to measure specificity. Designed primers for Arenavirus and Baculovirus were tested experimentally. The method presented here is useful for designing degenerate primers on collections of related protein sequences, allowing detection of new family members.

3.
J Virol ; 86(22): 12069-79, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22933288

ABSTRACT

The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology. In this study, the genome sequences of 58 baculoviruses were analyzed, with the aim to detect previously undescribed core genes because of their remote homology. A routine based on Multi PSI-Blast/tBlastN and Multi HaMStR allowed us to detect 31 of 33 accepted core genes and 4 orthologous sequences in the Baculoviridae which were not described previously. Our results show that the ac53, ac78, ac101 (p40), and ac103 (p48) genes have orthologs in all genomes and should be considered core genes. Accordingly, there are 37 orthologous genes in the family Baculoviridae.


Subject(s)
Baculoviridae/genetics , Genes, Viral , Algorithms , Amino Acid Motifs , Computational Biology/methods , DNA, Viral/genetics , Databases, Genetic , Evolution, Molecular , Genome, Viral , Models, Genetic , Models, Statistical , Sequence Alignment , Sequence Analysis, DNA , Viral Proteins/genetics , Virion/genetics
4.
Virus Genes ; 40(3): 320-8, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20148301

ABSTRACT

The Junín virus strain Candid#1 was developed as a live attenuated vaccine for Argentine hemorrhagic fever. In this article, we report sequence information of the L and S RNAs of Junín virus Candid#1 and XJ#44 strains, and show the comparisons with the XJ13 wild-type strain and with other Junín virus strains, like Romero, IV4454 and MC2 strains, and other closely and distantly related arenaviruses. Comparisons of the nucleotide and amino acid sequences of all genes of three strains from the same vaccine genealogy, revealed different point mutations that could be associated with the attenuated phenotype. A 91% of the mutations found are consistent with a hypothesis of progressive attenuation of virulence from XJ13 to XJ#44 and to Candid#1; 39% of mutations were observed in XJ#44 and conserved in Candid#1, while another 52% of the mutations appeared only in Candid#1 strain. The remaining 9% corresponded to reverse mutations in the L gene. In summary, the present work shows a set of mutations that could be related to the virulence attenuation phenomenon. This information will serve as a starting point to study this biological phenomenon, provided that a reverse genetics system for Junín virus is developed to allow the generation of infectious virions with specific mutations.


Subject(s)
Junin virus/genetics , Junin virus/pathogenicity , Viral Vaccines , Arenaviridae Infections/prevention & control , Base Sequence , Cluster Analysis , Humans , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Phylogeny , Point Mutation , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology , Vaccines, Attenuated
5.
Virus Genes ; 32(1): 37-41, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16525733

ABSTRACT

Junin virus strain Candid #1 was developed as a live attenuated vaccine for Argentine haemorrhagic fever. In this paper, we report the nucleotide sequences of L RNA of Candid #1 and examine the relationship to its more virulent ancestors Junin virus XJ#44 and XJ 13 (prototype) and other closely and distantly related arenaviruses. Comparisons of the nucleotide and amino acid sequences of L and Z genes of Candid #1 and its progenitor strains revealed twelve point mutations in the L polypeptide that are unique to the vaccine strain. These changes could be provisionally associated with the attenuated phenotype. In contrast, Z ORF was completely conserved among all strains.


Subject(s)
Junin virus/genetics , Junin virus/immunology , Animals , Arenaviridae Infections/immunology , Arenaviridae Infections/prevention & control , Genome, Viral , Guinea Pigs , Humans , Junin virus/pathogenicity , Mice , Molecular Sequence Data , Phylogeny , Point Mutation , RNA, Viral/genetics , Species Specificity , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Proteins/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...