Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Cells ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667274

ABSTRACT

Skin ageing is defined, in part, by collagen depletion and fragmentation that leads to a loss of mechanical tension. This is currently believed to reflect, in part, the accumulation of senescent cells. We compared the expression of genes and proteins for components of the extracellular matrix (ECM) as well as their regulators and found that in vitro senescent cells produced more matrix metalloproteinases (MMPs) than proliferating cells from adult and neonatal donors. This was consistent with previous reports of senescent cells contributing to increased matrix degradation with age; however, cells from adult donors proved significantly less capable of producing new collagen than neonatal or senescent cells, and they showed significantly lower myofibroblast activation as determined by the marker α-SMA. Functionally, adult cells also showed slower migration than neonatal cells. We concluded that the increased collagen degradation of aged fibroblasts might reflect senescence, the reduced collagen production likely reflects senescence-independent processes.


Subject(s)
Cellular Senescence , Collagen , Fibroblasts , Skin , Humans , Fibroblasts/metabolism , Skin/metabolism , Skin/cytology , Adult , Collagen/metabolism , Extracellular Matrix/metabolism , Infant, Newborn , Aging/metabolism , Cell Proliferation , Matrix Metalloproteinases/metabolism , Cell Movement , Cells, Cultured , Middle Aged
2.
Matrix Biol ; 118: 110-128, 2023 04.
Article in English | MEDLINE | ID: mdl-36924903

ABSTRACT

Imbalance of collagen I expression results in severe pathologies. Apart from activation by the TGFß-receptor/Smad pathway, control of collagen I expression remains poorly understood. Here, we used human dermal fibroblasts expressing a mCherry fluorescent protein driven by endogenous COL1A1 promoter to functionally screen the kinome and phosphatome. We identify 8 negative regulators, revealing that collagen is under tonic repression. The cell surface receptor BDKRB2 represses collagen I and other pro-fibrotic genes. Interestingly, it also promotes other basal membrane ECM genes. This function is independent of the natural ligand, bradykinin, and of SMAD2/3 factors, instead requiring constant ERK1/2 repression. TGFß stimulation induces rapid BDKRB2 transcriptional downregulation. Human fibrotic fibroblasts have reduced BDKRB2 levels and enhancing its expression in keloid fibroblasts represses COL1A1. We propose that tonic signalling by BDKRB2 prevents collagen overproduction in skin fibroblasts.


Subject(s)
Collagen Type I , Skin , Humans , Collagen Type I/genetics , Collagen Type I/metabolism , Skin/metabolism , Collagen/metabolism , Transforming Growth Factor beta/metabolism , Cells, Cultured , Fibroblasts/metabolism , Receptors, Bradykinin/metabolism
3.
Exp Dermatol ; 32(5): 620-631, 2023 05.
Article in English | MEDLINE | ID: mdl-36695185

ABSTRACT

Skin ageing is an intricate physiological process affected by intrinsic and extrinsic factors. There is a demand to understand how the skin changes with age and photoexposure in individuals with Fitzpatrick skin types I-III due to accelerated photoageing and the risk of cutaneous malignancies. To assess the structural impact of intrinsic and extrinsic ageing, we analysed 14 skin parameters from the photoprotected buttock and photoexposed dorsal forearm of young and ageing females with Fitzpatrick skin types II-III (n = 20) using histomorphic techniques. Whilst the minimum viable epidermis (Emin ) remained constant (Q > 0.05), the maximum viable epidermis (Emax ) was decreased by both age and photoexposure (Q ≤ 0.05), which suggests that differences in epidermal thickness are attributed to changes in the dermal-epidermal junction (DEJ). Changes in Emax were not affected by epidermal cell proliferation. For the first time, we investigated the basal keratinocyte morphology with age and photoexposure. Basal keratinocytes had an increased cell size, cellular height and a more columnar phenotype in photoexposed sites of young and ageing individuals (Q ≤ 0.05), however no significant differences were observed with age. Some of the most striking changes were observed in the DEJ, and a decrease in the interdigitation index was observed with both age and photoexposure (Q ≤ 0.001), accompanied by a decreased height of rête ridges and dermal papilla. Interestingly, young photoexposed skin was comparable to ageing skin across many parameters, and we hypothesise that this is due to accelerated photoageing. This study highlights the importance of skin care education and photoprotection from an early age.


Subject(s)
Skin Aging , Skin Diseases , Female , Humans , Skin/pathology , Epidermis/physiology , Skin Diseases/pathology
4.
Dev Cell ; 57(22): 2584-2598.e11, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36413951

ABSTRACT

Autophagy is an essential catabolic process that promotes the clearance of surplus or damaged intracellular components. Loss of autophagy in age-related human pathologies contributes to tissue degeneration through a poorly understood mechanism. Here, we identify an evolutionarily conserved role of autophagy from yeast to humans in the preservation of nicotinamide adenine dinucleotide (NAD) levels, which are critical for cell survival. In respiring mouse fibroblasts with autophagy deficiency, loss of mitochondrial quality control was found to trigger hyperactivation of stress responses mediated by NADases of PARP and Sirtuin families. Uncontrolled depletion of the NAD(H) pool by these enzymes ultimately contributed to mitochondrial membrane depolarization and cell death. Pharmacological and genetic interventions targeting several key elements of this cascade improved the survival of autophagy-deficient yeast, mouse fibroblasts, and human neurons. Our study provides a mechanistic link between autophagy and NAD metabolism and identifies targets for interventions in human diseases associated with autophagic, lysosomal, and mitochondrial dysfunction.


Subject(s)
NAD , Saccharomyces cerevisiae , Animals , Mice , Humans , Cell Survival , Autophagy , Cell Death
5.
Aging Cell ; 21(2): e13550, 2022 02.
Article in English | MEDLINE | ID: mdl-35037366

ABSTRACT

Human skin ageing is a complex and heterogeneous process, which is influenced by genetically determined intrinsic factors and accelerated by cumulative exposure to extrinsic stressors. In the current world ageing demographic, there is a requirement for a bioengineered ageing skin model, to further the understanding of the intricate molecular mechanisms of skin ageing, and provide a distinct and biologically relevant platform for testing actives and formulations. There have been many recent advances in the development of skin models that recapitulate aspects of the ageing phenotype in vitro. This review encompasses the features of skin ageing, the molecular mechanisms that drive the ageing phenotype, and tissue engineering strategies that have been utilised to bioengineer ageing skin in vitro.


Subject(s)
Skin Aging , Phenotype , Skin , Skin Aging/genetics , Tissue Engineering
6.
J Invest Dermatol ; 142(7): 1934-1946.e21, 2022 07.
Article in English | MEDLINE | ID: mdl-34890626

ABSTRACT

Understanding the changes in the skin microbiome and their relationship to host skin factors during aging remains largely unknown. To better understand this phenomenon, we collected samples for metagenomic and host skin factor analyses from the forearm, buttock, and facial skin from 158 Caucasian females aged 20‒24, 30‒34, 40‒44, 50‒54, 60‒64, and 70‒74 years. Metagenomics analysis was performed using 16S ribosomal RNA gene sequencing, whereas host sebocyte gland area, skin lipids, natural moisturizing factors, and antimicrobial peptides measurements were also performed. These analyses showed that skin bacterial diversity increased at all the skin sites with increasing age. Of the bacterial genera with an average relative abundance >1%, only Lactobacillus and Cutibacterium demonstrated a significant change (decrease) in abundance at all sampled skin sites with increasing age. Additional bacterial genera demonstrated significant age- and site-specific changes in abundance. Analysis of sebocyte area, natural moisturizing factors, lipids, and antimicrobial peptides showed an age-related decrease in sebocyte area and increases in natural moisturizing factors/antimicrobial peptides/skin lipids, all of which correlated with changes in specific bacterial genera. In conclusion, the human skin microbiome undergoes age-associated alterations that may reflect underlying age-related changes in cutaneous biology.


Subject(s)
Microbiota , Adult , Aging , Bacteria/genetics , Female , Humans , Lipids , Metagenomics , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Skin/microbiology
7.
PLoS One ; 16(11): e0260095, 2021.
Article in English | MEDLINE | ID: mdl-34843523

ABSTRACT

Ablative fractional laser treatment is considered the gold standard for skin rejuvenation. In order to understand how fractional laser works to rejuvenate skin, we performed microarray profiling on skin biopsies to identify temporal and dose-response changes in gene expression following fractional laser treatment. The backs of 14 women were treated with ablative fractional laser (Fraxel®) and 4 mm punch biopsies were collected from an untreated site and at the treated sites 1, 3, 7, 14, 21 and 28 days after the single treatment. In addition, in order to understand the effect that multiple fractional laser treatments have on skin rejuvenation, several sites were treated sequentially with either 1, 2, 3, or 4 treatments (with 28 days between treatments) followed by the collection of 4 mm punch biopsies. RNA was extracted from the biopsies, analyzed using Affymetrix U219 chips and gene expression was compared between untreated and treated sites. We observed dramatic changes in gene expression as early as 1 day after fractional laser treatment with changes remaining elevated even after 1 month. Analysis of individual genes demonstrated significant and time related changes in inflammatory, epidermal, and dermal genes, with dermal genes linked to extracellular matrix formation changing at later time points following fractional laser treatment. When comparing the age-related changes in skin gene expression to those induced by fractional laser, it was observed that fractional laser treatment reverses many of the changes in the aging gene expression. Finally, multiple fractional laser treatments, which cover different regions of a treatment area, resulted in a sustained or increased dermal remodeling response, with many genes either differentially regulated or continuously upregulated, supporting previous observations that maximal skin rejuvenation requires multiple fractional laser treatments. In conclusion, fractional laser treatment of human skin activates a number of biological processes involved in wound healing and tissue regeneration.


Subject(s)
Gene Expression/radiation effects , Rejuvenation/physiology , Wound Healing/genetics , Adult , Aging/genetics , Biopsy , Epidermal Cells/metabolism , Epidermal Cells/radiation effects , Epidermis/radiation effects , Female , Gene Expression/genetics , Gene Expression Profiling/methods , Humans , Laser Therapy/methods , Middle Aged , RNA , Skin/metabolism , Transcriptome/genetics
8.
PLoS One ; 16(10): e0258554, 2021.
Article in English | MEDLINE | ID: mdl-34665817

ABSTRACT

At birth, human infants are poised to survive in harsh, hostile conditions. An understanding of the state of newborn skin development and maturation is key to the maintenance of health, optimum response to injury, healing and disease. The observational study collected full-thickness newborn skin samples from 27 infants at surgery and compared them to skin samples from 43 adult sites protected from ultraviolet radiation exposure, as the standard for stable, mature skin. Transcriptomics profiling and gene set enrichment analysis were performed. Statistical analysis established over 25,000 differentially regulated probe sets, representing 10,647 distinct genes, in infant skin compared to adult skin. Gene set enrichment analysis showed a significant increase in 143 biological processes (adjusted p < 0.01) in infant skin, versus adult skin samples, including extracellular matrix (ECM) organization, cell adhesion, collagen fibril organization and fatty acid metabolic process. ECM organization and ECM structure organization were the biological processes in infant skin with the lowest adjusted P-value. Genes involving epidermal development, immune function, cell differentiation, and hair cycle were overexpressed in adults, representing 101 significantly enriched biological processes (adjusted p < 0.01). The processes with the highest significant difference were skin and epidermal development, e.g., keratinocyte differentiation, keratinization and cornification intermediate filament cytoskeleton organization and hair cycle. Enriched Gene Ontology (GO) biological processes also involved immune function, including antigen processing and presentation. When compared to ultraviolet radiation-protected adult skin, our results provide essential insight into infant skin and its ability to support the newborn's preparedness to survive and flourish, despite the infant's new environment laden with microbes, high oxygen tension and potential irritants. This fundamental knowledge is expected to guide strategies to protect and preserve the features of unperturbed, young skin.


Subject(s)
Gene Expression Profiling , Adult , Humans , Infant , Infant, Newborn , Ultraviolet Rays
9.
Int J Cosmet Sci ; 43(5): 518-529, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34272744

ABSTRACT

OBJECTIVE: To explore synergistic effects related to skin regeneration, peptides with distinct biological mechanisms of action were evaluated in combination with different skin cell lines in the presence or absence of niacinamide (Nam). Furthermore, the synergistic responses of peptide combinations on global gene expression were compared with the changes that occur with fractional laser resurfacing treatment, a gold standard approach for skin rejuvenation, to further define optimal peptide combinations. METHODS: Microarray profiling was used to characterize the biological responses of peptide combinations (+/- Nam) relative to the individual components in epidermal keratinocyte and dermal fibroblast cell lines. Cellular functional assays were utilized to confirm the synergistic effects of peptide combinations. Bioinformatics approaches were used to link the synergistic effects of peptide combinations on gene expression to the transcriptomics of the skin rejuvenation response from fractional laser treatment. RESULTS: Microarray analysis of skin cells treated with peptide combinations revealed synergistic changes in gene expression compared with individual peptide controls. Bioinformatic analysis of synergy genes in keratinocytes revealed the activation of NRF2-mediated oxidative stress responses by a combination of Ac-PPYL, Pal-KTTKS and Nam. Additional analysis revealed direct downstream transcriptional targets of NRF2/ARE exhibiting synergistic regulation by this combination of materials, which was corroborated by a cellular reporter assay. NRF2-mediated oxidative stress response pathways were also found to be activated in the transcriptomics of the early skin rejuvenation response to fractional laser treatment, suggesting the importance of this biology in the early stages of tissue repair. Additionally, the second combination of peptides (pal-KT and Ac-PPYL) was found to synergistically restore cellular ATP levels that had been depleted due to the presence of ROS, indicating an additional mechanism, whereby peptide synergies may accelerate skin repair. CONCLUSION: Through combinatorial synergy studies, we have identified additional in vitro skin repair mechanisms beyond the previously described functions of individual peptides and correlated these to the transcriptomics of the skin rejuvenation response of fractional laser treatment. These findings suggest that specific peptides can act together, via complementary and synergistic mechanisms, to holistically enhance the regenerative capacity of in vitro skin cells.


OBJECTIF: Pour explorer les effets synergiques liés à la régénération cutanée, les peptides ayant des mécanismes d'action biologiques distincts ont été évalués en association dans différentes lignées cellulaires cutanées en présence ou en l'absence de niacinamide (Nam). De plus, les réponses synergiques des associations de peptides sur l'expression des gènes globale ont été comparées aux changements qui surviennent avec le traitement de resurfaçage au laser fractionné, une approche de référence pour le rajeunissement de la peau, afin de définir davantage les associations optimales de peptides. MÉTHODES: Le profilage de micro-réseau a été utilisé pour caractériser les réponses biologiques des combinaisons de peptides (+/-Nam) par rapport aux composants individuels dans les lignées cellulaires de kératinocytes épidermiques et de fibroblastes dermiques. Des tests fonctionnels cellulaires ont été réalisés pour confirmer les effets synergiques des associations de peptides. Des approches bio-informatiques ont été utilisées pour mettre en lien les effets synergiques des associations de peptides sur l'expression des gènes à la transcriptomique de la réponse de rajeunissement de la peau du traitement au laser fractionné. RÉSULTATS: L'analyse par micro-réseau des cellules cutanées traitées par des combinaisons de peptides a révélé des changements synergiques dans l'expression des gènes par rapport aux contrôles peptidiques individuels. L'analyse bio-informatique des gènes de synergie dans les kératinocytes a révélé une activation des réponses au stress oxydatif médiées par NRF2 par une association d'Ac-PPYL, de Pal-KTTKS et de Nam. Une analyse supplémentaire a révélé des cibles transcriptionnelles directes en aval de NRF2/ARE présentant une régulation synergique par cette combinaison de matériaux, qui a été corroborée par un test de gène rapporteur. Les voies de réponses au stress oxydatif médiées par NRF2 se sont également révélées activées dans la transcriptomique de la réponse précoce de rajeunissement cutané au traitement au laser fractionné, ce qui suggère l'importance de cette biologie dans les stades précoces de la réparation des tissus. De plus, une deuxième association de peptides (pal-KT et Ac-PPYL) s'est avérée restaurer de manière synergique les taux d'ATP cellulaire qui avaient été épuisés en raison de la présence de ROS, indiquant un mécanisme supplémentaire par lequel les synergies de peptides pourraient accélérer la réparation cutanée. CONCLUSION: Grâce à des études de synergie combinatoire, nous avons identifié des mécanismes de réparation cutanés in vitro supplémentaires au-delà des fonctions précédemment décrites des peptides individuels et les avons corrélés à la transcriptomique de la réponse de rajeunissement de la peau au traitement au laser fractionné. Ces résultats suggèrent que des peptides spécifiques peuvent agir ensemble, par le biais de mécanismes complémentaires et synergiques, pour améliorer de manière globale la capacité régénérative des cellules cutanées in vitro.


Subject(s)
Keratinocytes/drug effects , Niacinamide/pharmacology , Peptides/pharmacology , Skin Aging/drug effects , Cell Line , Drug Synergism , Gene Expression , Humans , Rejuvenation
11.
Am J Hum Genet ; 108(7): 1301-1317, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34038740

ABSTRACT

Human C2orf69 is an evolutionarily conserved gene whose function is unknown. Here, we report eight unrelated families from which 20 children presented with a fatal syndrome consisting of severe autoinflammation and progredient leukoencephalopathy with recurrent seizures; 12 of these subjects, whose DNA was available, segregated homozygous loss-of-function C2orf69 variants. C2ORF69 bears homology to esterase enzymes, and orthologs can be found in most eukaryotic genomes, including that of unicellular phytoplankton. We found that endogenous C2ORF69 (1) is loosely bound to mitochondria, (2) affects mitochondrial membrane potential and oxidative respiration in cultured neurons, and (3) controls the levels of the glycogen branching enzyme 1 (GBE1) consistent with a glycogen-storage-associated mitochondriopathy. We show that CRISPR-Cas9-mediated inactivation of zebrafish C2orf69 results in lethality by 8 months of age due to spontaneous epileptic seizures, which is preceded by persistent brain inflammation. Collectively, our results delineate an autoinflammatory Mendelian disorder of C2orf69 deficiency that disrupts the development/homeostasis of the immune and central nervous systems.


Subject(s)
Encephalitis/genetics , Mitochondrial Diseases/genetics , Animals , Biological Evolution , CRISPR-Cas Systems , Cell Line , Encephalitis/mortality , Female , Genes, Recessive , Glycogen/metabolism , Humans , Inflammation/genetics , Male , Membrane Proteins/genetics , Mitochondrial Diseases/mortality , Pedigree , Seizures/genetics , Seizures/mortality , Zebrafish/genetics
12.
Pediatr Res ; 89(5): 1208-1215, 2021 04.
Article in English | MEDLINE | ID: mdl-32599611

ABSTRACT

BACKGROUND: The objective of this study was to measure skin characteristics in premature (PT), late preterm (LPT), and full-term (FT) neonates compared with adults at two times (T1, T2). METHODS: Skin samples of 61 neonates and 34 adults were analyzed for protein biomarkers, natural moisturizing factor (NMF), and biophysical parameters. Infant groups were: <34 weeks (PT), 34-<37 weeks (LPT), and ≥37 weeks (FT). RESULTS: Forty proteins were differentially expressed in FT infant skin, 38 in LPT infant skin, and 12 in PT infant skin compared with adult skin at T1. At T2, 40 proteins were differentially expressed in FT infants, 38 in LPT infants, and 54 in PT infants compared with adults. All proteins were increased at both times, except TMG3, S100A7, and PEBP1, and decreased in PTs at T1. The proteins are involved in filaggrin processing, protease inhibition/enzyme regulation, and antimicrobial function. Eight proteins were decreased in PT skin compared with FT skin at T1. LPT and FT proteins were generally comparable at both times. Total NMF was lower in infants than adults at T1, but higher in infants at T2. CONCLUSIONS: Neonates respond to the physiological transitions at birth by upregulating processes that drive the production of lower pH of the skin and water-binding NMF components, prevent protease activity leading to desquamation, and increase the barrier antimicrobial properties. IMPACT: Neonates respond to the transitions at birth by upregulating processes that drive the production of lower pH of the skin and NMF, prevent protease activity leading to desquamation, and increase the antimicrobial properties of the barrier. The neonatal epidermal barrier exhibits a markedly different array of protein biomarkers both shortly after birth and 2-3 months later, which are differentially expressed versus adults. The major biomarker-functional classes included filaggrin processing, protease inhibitor/enzyme regulators, antimicrobials, keratins, lipids, and cathepsins. The findings will guide improvement of infant skin care practices, particularly for the most premature infants with the ultimate goals mitigating nosocomial infection.


Subject(s)
Aging/physiology , Skin Absorption , Adult , Biomarkers/metabolism , Biophysical Phenomena , Female , Humans , Infant, Newborn , Infant, Premature , Male , Proteins/metabolism , Proteomics/methods
14.
Sci Rep ; 10(1): 19723, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184327

ABSTRACT

Type I collagen is a key protein of most connective tissue and its up-regulation is required for wound healing but is also involved in fibrosis. Control of expression of this collagen remains poorly understood apart from Transforming Growth Factor beta (TGF-ß1)-mediated induction. To generate a sensitive, practical, robust, image-based high-throughput-compatible reporter system, we genetically inserted a short-lived fluorescence reporter downstream of the endogenous type I collagen (COL1A1) promoter in skin fibroblasts. Using a variety of controls, we demonstrate that the cell line faithfully reports changes in type I collagen expression with at least threefold enhanced sensitivity compared to endogenous collagen monitoring. We use this assay to test the potency of anti-fibrotic compounds and screen siRNAs for regulators of TGF-ß1-induced type I collagen expression. We propose our reporter cell line, Red-COLA1, as a new efficient tool to study type I collagen transcriptional regulation.


Subject(s)
Collagen Type I/metabolism , Fibroblasts/metabolism , Fibrosis/metabolism , Gene Expression Regulation/drug effects , Indoles/pharmacology , Luminescent Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Cells, Cultured , Collagen/metabolism , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Fibroblasts/cytology , Fibrosis/drug therapy , Fibrosis/pathology , High-Throughput Screening Assays , Humans , Luminescent Proteins/genetics , Promoter Regions, Genetic , RNA, Small Interfering/genetics , Transcription, Genetic , Transforming Growth Factor beta1/genetics , Red Fluorescent Protein
15.
Hypoxia (Auckl) ; 8: 1-12, 2020.
Article in English | MEDLINE | ID: mdl-32104717

ABSTRACT

BACKGROUND: Inflammation results in significant shifts in tissue metabolism. Recent studies indicate that inflammation and hypoxia occur concomitantly. We examined whether circulating and tissue markers of hypoxia could serve as surrogate indicators of disease severity in adult and pediatric patients with inflammatory bowel disease (IBD). METHODS: Serum and colonic biopsies were obtained from pediatric subjects with active IBD colitis and adult subjects with active and inactive ulcerative colitis, along with healthy non-colitis controls of all ages. Disease activity was evaluated by endoscopy and histopathology. Levels of serum hypoxia markers (macrophage inflammatory protein-3α [MIP-3α], vascular endothelial growth factor [VEGF], and erythropoietin [EPO]) were measured. RESULTS: Children with active IBD colitis had higher levels of serum MIP-3α and VEGF compared to non-colitis controls (p<0.01 and p<0.05, respectively). In adult subjects with endoscopically active ulcerative colitis, serum MIP-3α and EPO were significantly elevated compared to non-colitis controls (both p<0.01). In parallel, analysis of colon tissue MIP-3α mRNA and protein in pediatric subjects revealed increased expression in those with IBD colitis compared to controls (p<0.05 and p<0.01 for mRNA and protein, respectively). Serum MIP-3α and VEGF significantly increased with histology grade. CONCLUSION: Peripheral blood hypoxia markers may be useful indicators of disease activity for pediatric and adult IBD patients.

16.
J Clin Med Res ; 11(11): 745-759, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31803317

ABSTRACT

BACKGROUND: The study aimed to determine the effect of menopausal status and hormone therapy on the introitus and labia majora at the levels of histology and gene expression. METHODS: Three cohorts of 10 women each (pre-menopause, post-menopause and post-menopause + hormone therapy) were selected based on the presentation of clinical atrophy and vaginal pH. Biopsies were obtained from the introitus (fourchette) and labia majora and processed for histology and gene expression analyses with microarrays. Other data collected included self-assessed symptoms, serum estradiol, testosterone, serum hormone binding globulin and the pH of the vagina and labia majora. RESULTS: The introitus appears exquisitely sensitive to hormone status. Dramatic changes were observed in histology including a thinning of the epithelium in post-menopausal subjects with vaginal atrophy. Furthermore, there was differential expression of many genes that may contribute to tissue remodeling in the atrophic introitus. Levels of expression of genes associated with wound healing, angiogenesis, cell migration/locomotion, dermal structure, apoptosis, inflammation, epithelial cell differentiation, fatty acid, carbohydrate and steroid metabolism were significantly different in the cohort exhibiting atrophy of the introitus. While changes were also observed at the labia, that site was considerably less sensitive to hormone status. The gene expression changes observed at the introitus in this study were very similar to those reported previously in the atrophic vagina providing further evidence that these changes are associated with atrophy. CONCLUSIONS: The histological and gene expression changes occurring within the introitus after menopause may contribute to the constellation of symptoms that constitute the genitourinary syndrome of menopause.

17.
Methods Mol Biol ; 1993: 107-122, 2019.
Article in English | MEDLINE | ID: mdl-31148082

ABSTRACT

Human skin equivalents (HSEs) are a valuable tool for both academic and industrial laboratories to further the understanding of skin physiology and associated diseases. Over the last few decades, there have been many advances in the development of HSEs that successfully recapitulate the structure of human skin in vitro; however a main limitation is variability due to the use of complex protocols and exogenous extracellular matrix (ECM) proteins. We have developed a robust and unique full-thickness skin equivalent that is highly reproducible due to the use of a consistent scaffold, commercially available cells, and defined low-serum media. The Alvetex® scaffold technology allows fibroblasts to produce their own endogenous ECM proteins within the scaffold, which alleviates the need for exogenous collagen, and supports the differentiation and stratification of the epidermis. Our full-thickness skin equivalent is generated using a detailed step-by-step protocol, which sequentially forms the multilayered structure of human skin in vitro. This model can be adapted for many downstream applications such as disease modeling and testing of active compounds for cosmetics.


Subject(s)
Fibroblasts , Keratinocytes , Skin/cytology , Cells, Cultured , Collagen , Culture Media, Serum-Free , Extracellular Matrix Proteins , Humans , Infant, Newborn , Tissue Engineering/methods
18.
J Anat ; 234(4): 438-455, 2019 04.
Article in English | MEDLINE | ID: mdl-30740672

ABSTRACT

Recreating the structure of human tissues in the laboratory is valuable for fundamental research, testing interventions, and reducing the use of animals. Critical to the use of such technology is the ability to produce tissue models that accurately reproduce the microanatomy of the native tissue. Current artificial cell-based skin systems lack thorough characterisation, are not representative of human skin, and can show variation. In this study, we have developed a novel full thickness model of human skin comprised of epidermal and dermal compartments. Using an inert porous scaffold, we created a dermal construct using human fibroblasts that secrete their own extracellular matrix proteins, which avoids the use of animal-derived materials. The dermal construct acts as a foundation upon which epidermal keratinocytes were seeded and differentiated into a stratified keratinised epithelium. In-depth morphological analyses of the model demonstrated very close similarities with native human skin. Extensive immunostaining and electron microscopy analysis revealed ultrastructural details such as keratohyalin granules and lamellar bodies within the stratum granulosum, specialised junctional complexes, and the presence of a basal lamina. These features reflect the functional characteristics and barrier properties of the skin equivalent. Robustness and reproducibility of in vitro models are important attributes in experimental practice, and we demonstrate the consistency of the skin construct between different users. In summary, a new model of full thickness human skin has been developed that possesses microanatomical features reminiscent of native tissue. This skin model platform will be of significant interest to scientists researching the structure and function of human skin.


Subject(s)
Skin , Tissue Engineering/methods , Basement Membrane/cytology , Basement Membrane/ultrastructure , Cell Differentiation , Cells, Cultured , Dermis/cytology , Dermis/ultrastructure , Epidermis/ultrastructure , Extracellular Matrix Proteins/metabolism , Fibroblasts/metabolism , Humans , In Vitro Techniques/methods , Keratinocytes/metabolism , Microscopy, Electron , Skin/anatomy & histology , Skin/ultrastructure
19.
Bioinformatics ; 34(21): 3702-3710, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29790940

ABSTRACT

Motivation: COPASI is an open source software package for constructing, simulating and analyzing dynamic models of biochemical networks. COPASI is primarily intended to be used with a graphical user interface but often it is desirable to be able to access COPASI features programmatically, with a high level interface. Results: PyCoTools is a Python package aimed at providing a high level interface to COPASI tasks with an emphasis on model calibration. PyCoTools enables the construction of COPASI models and the execution of a subset of COPASI tasks including time courses, parameter scans and parameter estimations. Additional 'composite' tasks which use COPASI tasks as building blocks are available for increasing parameter estimation throughput, performing identifiability analysis and performing model selection. PyCoTools supports exploratory data analysis on parameter estimation data to assist with troubleshooting model calibrations. We demonstrate PyCoTools by posing a model selection problem designed to show case PyCoTools within a realistic scenario. The aim of the model selection problem is to test the feasibility of three alternative hypotheses in explaining experimental data derived from neonatal dermal fibroblasts in response to TGF-ß over time. PyCoTools is used to critically analyze the parameter estimations and propose strategies for model improvement. Availability and implementation: PyCoTools can be downloaded from the Python Package Index (PyPI) using the command 'pip install pycotools' or directly from GitHub (https://github.com/CiaranWelsh/pycotools). Documentation at http://pycotools.readthedocs.io. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Documentation , Software , Fibroblasts
20.
J Am Acad Dermatol ; 78(1): 29-39.e7, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29146147

ABSTRACT

BACKGROUND: Intrinsic and extrinsic factors, including ultraviolet irradiation, lead to visible signs of skin aging. OBJECTIVE: We evaluated molecular changes occurring in photoexposed and photoprotected skin of white women 20 to 74 years of age, some of whom appeared substantially younger than their chronologic age. METHODS: Histologic and transcriptomics profiling were conducted on skin biopsy samples of photoexposed (face and dorsal forearm) or photoprotected (buttocks) body sites from 158 women. 23andMe genotyping determined genetic ancestry. RESULTS: Gene expression and ontologic analysis revealed progressive changes from the 20s to the 70s in pathways related to oxidative stress, energy metabolism, senescence, and epidermal barrier; these changes were accelerated in the 60s and 70s. The gene expression patterns from the subset of women who were younger-appearing were similar to those in women who were actually younger. LIMITATIONS: Broader application of these findings (eg, across races and Fitzpatrick skin types) will require further studies. CONCLUSIONS: This study demonstrates a wide range of molecular processes in skin affected by aging, providing relevant targets for improving the condition of aging skin at different life stages and defining a molecular pattern of epidermal gene expression in women who appear younger than their chronologic age.


Subject(s)
Genetic Predisposition to Disease , Skin Aging/genetics , Skin Aging/physiology , Ultraviolet Rays/adverse effects , Adult , Aged , Aged, 80 and over , Biopsy, Needle , Facial Dermatoses/genetics , Facial Dermatoses/pathology , Female , Humans , Immunohistochemistry , Middle Aged , Prognosis , Risk Factors , Skin Aging/pathology , White People , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...