Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 85(6): 2630-3, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11387407

ABSTRACT

This research presents new data and reanalyzed information to refute the criticisms of our model of stiffness control during quiet standing. A re-review of their references to biomechanical research on muscle ankle stiffness confirmed muscle stiffness estimates of the ankle series elastic elements that agreed closely with our estimates. A new technique is presented that directly estimates the muscle stiffness from the ankle moment (N. m) and sway angle (deg). The linear regression of 10 subjects standing quietly for 10 s estimated the stiffness (N x m/deg) to be safely above the gravitational spring. The R(2) scores for this linear regression averaged 0.92, confirming how closely the model approached a perfect spring that would have an R(2) = 1. These results confirm our model of a simple muscle stiffness control and refutes the criticisms.


Subject(s)
Ankle Joint/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Postural Balance/physiology , Adult , Elasticity , Humans , Linear Models
2.
J Biomech ; 32(11): 1149-58, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10541064

ABSTRACT

Postural control strategies have in the past been predominantly characterized by kinematics, surface forces, and EMG responses (e.g. Horak and Nashner, 1986, Journal of Neurophysiology 55(6), 1369-1381). The goal of this study was to provide unique and novel insights into the underlying motor mechanisms used in postural control by determining the joint moments during balance recovery from medio-lateral (M/L) perturbations. Ten adult males received medio-lateral (M/L) pushes to the trunk or pelvis. The inverted pendulum model of balance control (Winter et al., 1998, Journal of Neurophysiology 80, 1211-1221) was validated even though the body did not behave as a single pendulum, indicating that the centre of pressure (COP) is the variable used to control the centre of mass (COM). The perturbation magnitude was random, and the central nervous system (CNS) responded with an estimate of the largest anticipated perturbation. The observed joint moments served to move the COP in the appropriate direction and to control the lateral collapse of the trunk. The individual joints involved in controlling the COP contributed differing amounts to the total recovery response: the hip and spinal moments provided the majority of the recovery (approximately 85%), while the ankles contributed a small, but significant amount (15%). The differing contributions are based on the anatomical constraints and the functional requirements of the balance task. The onset of the joint moment was synchronous with the joint angle change, and occurred too early (56-116 ms) to be result of active muscle contraction. Therefore, the first line of defense was provided by muscle stiffness, not reflex-activated muscle activity.


Subject(s)
Joints/physiology , Models, Biological , Postural Balance/physiology , Posture/physiology , Adult , Awards and Prizes , Biomechanical Phenomena , Humans , Kinetics , Male , Ontario , Range of Motion, Articular/physiology , Reaction Time , Reference Values , Societies, Medical
3.
J Biomech ; 32(5): 545-9, 1999 May.
Article in English | MEDLINE | ID: mdl-10327009

ABSTRACT

Our goal was to document the kinetic strategies for obstacle avoidance in below-knee amputees. Kinematic data were collected as unilateral below-knee traumatic amputees stepped over obstacles of various heights in the walking path. Inverse dynamics were employed to calculate power profiles and work during the limb-elevation and limb-lowering phases. Limb elevation was achieved by employing a different strategy of intra-limb interaction for elevation of the prosthetic limb than for the sound limb, which was similar to that seen in healthy adult non-amputees. As obstacle height increased, prosthetic side knee flexion was increased by modulating the work done at the hip, and not the knee, as seen on the sound side. Although the strength of the muscles about the residual knee was preserved, the range of motion of that knee had previously been found to be somewhat limited. Perhaps more importantly, potential instability of the interface between the stump and the prosthetic socket, and associated discomfort at the stump could explain the altered limb-elevation strategy. Interestingly, the limb-lowering strategy seen in the sound limb and in non-amputees already features modulation of rotational and translational work at the hip, so an alternate strategy was not required. Thus, following a major insult to the sensory and neuromuscular system, the CNS is able to update the internal model of the locomotor apparatus as the individual uses the new limb in a variety of movements, and modify control strategies as appropriate.


Subject(s)
Amputees , Artificial Limbs , Gait/physiology , Leg/physiology , Walking/physiology , Adaptation, Physiological , Adult , Amputation Stumps/physiopathology , Biomechanical Phenomena , Female , Hip Joint/physiology , Humans , Knee Joint/physiology , Male , Muscle Contraction/physiology , Neuromuscular Junction/physiology , Pain/physiopathology , Prosthesis Design , Range of Motion, Articular/physiology , Rotation , Surface Properties , Work/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...