Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36143682

ABSTRACT

Insulator monitoring using leakage current characteristics is essential for predicting an insulator's health. To evaluate the risk of flashover on the porcelain insulator using leakage current, experimental investigation of leakage current indices was carried out. In the first stage of the experiment, the effect of contamination, insoluble deposit density, wetting rate, and uneven distribution pollution were determined on the porcelain insulator under test. Then, based on the laboratory test results, leakage current information in time and frequency characteristics was extracted and employed as assessment indicators for the insulator's health. Six indicators, namely, peak current indicator, phase shift indicator, slope indicator, crest factor indicator, total harmonic distortion indicator, and odd harmonics indicator, are introduced in this work. The obtained results indicated that the proposed indicators had a significant role in evaluating the insulator's health. To evaluate the insulator's health levels based on the extracted indicator values, this work presents the naïve Bayes technique for the classification and prediction of the insulator's health. Finally, the confusion matrix for the experimental and prediction results for each indicator was established to determine the appropriateness of each indicator in determining the insulator's health status.

2.
Sci Rep ; 10(1): 20984, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33268816

ABSTRACT

In this paper, the electrical, dielectric, Raman and small angle X-ray scattering (SAXS) structure behavior of disposed transformer oil in the presence of multi-walled carbon nanotube (MWCNT) were systematically tested to verify their versatility for preparing better alternative transformer oil in future. MWCNT nanofluids are prepared using a two-step method with concentrations ranging from 0.00 to 0.02 g/L. The test results reveal that 0.005 g/L concentration possesses the most optimum performance based on the electrical (AC breakdown and lightning impulse) and dielectric (permittivity, dissipation factor and resistivity) behavior. According to the trend of AC breakdown strength and lightning impulse pattern, there were 212.58% and 40.01% enhancement indicated for 0.005 g/L concentration compared to the disposed transformer oil. The presence of MWCNT also yielding to the decrement of dissipation factor, increased on permittivity and resistivity behavior of disposed transformer oil which reflected to the performance of electrical properties. Furthermore, it is found that these features correlated to the structural properties as systematically verify by Raman and SAXS analysis study.

SELECTION OF CITATIONS
SEARCH DETAIL
...