Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 66(1): 11-26, 1998 Nov 18.
Article in English | MEDLINE | ID: mdl-9866858

ABSTRACT

The protein surface is the interface through which a protein senses the external world. Its composition of charged, polar and hydrophobic residues is crucial for the stability and activity of the protein. The charge state of seven of the twenty naturally occurring amino acids is pH dependent. A total of 95% of all titratable residues are located on the surface of soluble proteins. In evolutionary related families of proteins such residues are particularly prone to substitutions, insertions and deletions. We present here an analysis of the residue composition of 4038 proteins, selected from 125 protein families with < 25% identity between core members of each family. Whereas only 16.8% of the residues were truly buried, 40.7% were > 30% exposed on the surface and the remainder were < 30% exposed. The individual residue types show distinct differences. The data presented provides an important new approach to protein engineering of protein surfaces. Guidelines for the optimization of solvent exposure for a given residue are given. The cutinase family of enzymes has been investigated. The stability of native cutinase has been studied as a function of pH, and has been compared with the cutinase activity towards tributyrin. Whereas the onset of enzymatic activity is linked with the deprotonation of the active site HIS188, destabilization of the 3D structure as determined by differential scanning calorimetry is coupled with the loss of activity at very basic pH values. A modeling investigation of the pH dependence of the electrostatic potentials reveals that the activity range is accompanied by the development of a highly significant negative potential in the active site cleft. The 3D structures of three mutants of the Fusarium solani pisi cutinase have been solved to high resolution using X-ray diffraction analysis. Preliminary X-ray data are presented.


Subject(s)
Carboxylic Ester Hydrolases/chemistry , Protein Engineering/methods , Proteins/chemistry , Binding Sites , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Databases, Factual , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...