Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16186, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003308

ABSTRACT

Edible insects are perceived as an incredible opportunity to mitigate the major challenge of sustainably producing healthy foods for a growing world population in the face of climate change uncertainties over the coming decade. In this study, we assessed the nutrient composition and sensory properties of Acheta domesticus, Apis mellifera, Gnathocera trivittata, Gryllotalpa africana, Imbrasia epimethea, Imbrasia oyemensis, Locusta migratoria, Macrotermes subhylanus, Nomadacris septemfasciata, Rhyncophorus phoenicis, Ruspolia differens and Rhynchophorus ferrugineus consumed in Eastern D. R. Congo. The investigated edible insects are highly appreciated and nutritious, with proteins (20.67-43.93 g/100 g) and fats (14.53-36.02 g/100 g) being the major macro-nutrients, proving their potential to improve diets through food enrichment. The high potassium (24-386.67 mg/100 g), sodium (152-257.82 mg/100 g), magnesium (32-64 mg/100 g), iron (5.3-16.13 mg/100 g), calcium (25-156.67 mg/100 g) and zinc (11-19.67 mg/100 g) content make the assessed edible insects a useful mineral-containing ingredient for preventing undernutrition in countries which are plagued by micronutrient deficiencies. A scatter plot of matrices and Pearson's correlations between sensory attributes and nutritional composition showed a negative correlation (r = - 0.45) between protein and appearance. While no strong correlation was observed between nutritional attributes and sensory acceptance, a positive correlation was observed between potassium and aroma (r = 0.50), after-taste (r = 0.50) and acceptability (r = 0.52). Principal component analysis results indicated that the two axes accounted for up to 97.4% of the observed variability in the nutrient composition and sensory attributes of commonly consumed edible insects in the Eastern D. R. Congo. Given the significant delicacy and nutritional potential of edible insects highlighted in this paper, households can rely on the latter to meet their nutritional needs rather than conventional livestock, thus contributing to environmental and financial security through local business opportunities.


Subject(s)
Edible Insects , Animals , Nutritive Value , Humans , Nutritional Status , Democratic Republic of the Congo , Congo , Food Security , Insecta
2.
Food Sci Nutr ; 12(6): 4005-4018, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873450

ABSTRACT

A partial substitution of wheat flour with potato flour processed by various procedures was used to determine an optimal potato pretreatment method for noodle processing. Wheat flour was substituted with 10%, 30%, and 50% potato flour. Potato flour (PF) was processed using two different methods, including freeze-drying (FD) and low-temperature blanching, then oven drying (LTB_OD). The results showed that substituting wheat flour with freeze-dried (FD) flour (44.29 µm) significantly decreased the mean particle size of the blended flour, while LTB_OD flour (223.09 µm) increased the mean particle size. The pasting properties of wheat flour significantly improved when potato flour was added, with FD flour blends having the highest results. The highest dough development time (14.46 min) was attained when LTB_OD potato flour was substituted up to 50%. The microstructure images showed a poor and discontinuous gluten framework when potato flour content reached 50%. Adding potato flour decreased noodles' brightness (L*) while increasing their yellowness (b*). Noodles made from wheat and LTB_OD flour blends resulted in the highest cooking loss. The texture properties of noodles deteriorated when potato flour content reached 30%. Substituting up to 30% with freeze-dried flour and 10% LTB_OD resulted in noodles with the highest overall liking scores. The study suggests that for optimal noodle processing, substituting wheat flour with FD potato flour is more favorable than using LTB_OD, as it improves particle size, pasting properties, and overall liking scores while minimizing adverse effects on texture and cooking loss.

3.
J Ethnobiol Ethnomed ; 19(1): 3, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36604725

ABSTRACT

BACKGROUND: Located in the Eastern Democratic Republic of Congo (South-Kivu), Kalehe and Idjwi are two relatively unexplored territories with little to no research on edible insects even though anthropo-entomophagy practice is widespread. This study therefore aimed at exploring the biodiversity, perception, consumption, availability, host plants, harvesting techniques, and processing techniques of edible insects. METHODS: Data were collected through a field survey using three techniques, namely structured interviews, direct observations, and insect collection and taxonomy. A total of 260 respondents, 130 in each territory, were interviewed. The field survey focused on inventorying commonly edible insects as well as recording consumer preferences, preference factors, seasonal availability, host plants, harvesting techniques, and processing and preservation methods. Samples for taxonomic characterization were preserved in 70% alcohol. RESULTS: Nine edible insects, namely Ruspolia differens Serville 1838, Gryllotalpa Africana Palisot de Beauvois 1805, Locusta migratoria Linnaeus 1758, Macrotermes subhyalinus Rambur 1842, Gnathocera trivittata Swederus 1787, Rhynchophorus phoenicis Fabricius 1801, Vespula spp. Linnaeus 1758, Apis mellifera Linnaeus 1758, and Imbrasia oyemensis Rougeot 1955, were recorded as being consumed either as larvae, pupae, and adults. Ruspolia differens and M. subhyalinus were reported as the most preferred by consumers in the studied territories. A scatter plot of matrices and Pearson's correlations showed a negative correlation between preference based on taste, size, and shape, as well as perceived nutritional value. Their seasonal availability differs from one species to another and correlated with host plants availability. Harvesting techniques and processing and preservation methods depend on species, local knowledge, and practices. CONCLUSION: The huge edible insect diversity observed in Kalehe and Idjwi is evidence of anthropo-entomophagy practices in the area. In addition to being an important delicacy and traditional foods, edible insects can contribute to food, environmental, and financial security through local business opportunities. Households can rely on edible insects to meet their nutritional needs instead of conventional livestock. Indigenous practices and technologies used for harvesting, processing, and preserving edible insects must be improved to meet international standards to increase the market and capitalize on the economic potential of edible insects.


Subject(s)
Edible Insects , Bees , Animals , Democratic Republic of the Congo , Insecta , Food , Larva
4.
Sci Rep ; 12(1): 1576, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35091646

ABSTRACT

In response to growing food demand, edible insects are perceived as an opportunity to alleviate food insecurity. With its wide edible insects' biodiversity, the Democratic Republic of Congo is one of Africa's most critical entomophagous. This study aimed at giving a first insight on inventory showing diversity, perception, consumption, availability, host plants, harvesting techniques and processing techniques of edible insects in South-Kivu, DRC. It recorded twenty-three edible insects belonging to nine families and five orders, some of which are consumed in the larval, adult, egg and pupa stages. Rhyncophorus phoenicis, Alphitobius diaperinus, Macrotermes subhyalinus and Acheta domesticus were the most preferred edible insects in Fizi Territory, Ruspolia differens and Apis mellifera larvae in Kabare Territory, Imbrasia oyemensis, Imbrasia epimethea, Rhynchophorus ferrugineus and Rhyncophorus phoenicis in Mwenga Territory, Ruspolia differens, Macrotermes subhyalinus, Gryllotalpa africana, Nsike, Nomadacris septemfasciata and A. mellifera larvae in Walungu Territory. Ruspolia differens, I. oyemensis, A. mellifera larvae, G. africana and Nsike, were preferred for their taste. Acheta domesticus, A. diaperinus and A. mellifera larvae were abundant throughout the year, while others were only available for 9 months or less per year. Numerous plants have been recorded as their hosts, including plants used for food and income. Harvesting strategies and period, processing methods and preservation techniques depend on insect species, local knowledge and practices. These findings suggest similar and thorough studies on entomophagy across the country while encouraging the rearing of edible insects to address their existing high demand and environmental concerns.


Subject(s)
Edible Insects , Animals
5.
J Food Biochem ; 46(1): e14025, 2022 01.
Article in English | MEDLINE | ID: mdl-34888869

ABSTRACT

Numerous mushroom bioactive metabolites, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been studied in life-threatening conditions and diseases such as diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity attempting to identify natural therapies. These bioactive metabolites have shown potential as antiviral and immune system strengthener natural agents through diverse cellular and physiological pathways modulation with no toxicity evidence, widely available, and inexpensive. In light of the emerging literature, this paper compiles the most recent information describing the molecular mechanisms that underlie the nutraceutical potentials of these mushroom metabolites suggesting their effectiveness if combined with existing drug therapies while discussing the food functionality of mushrooms. The findings raise hope that these mushroom bioactive metabolites may be utilized as natural therapies considering their therapeutic potential while anticipating further research designing clinical trials and developing new drug therapies while encouraging their consumption as a natural adjuvant in preventing and controlling life-threatening conditions and diseases. PRACTICAL APPLICATIONS: Diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity are among the world's largest life-threatening conditions and diseases. Several mushroom bioactive compounds, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been found potential in tackling these diseases through diverse cellular and physiological pathways modulation with no toxicity evidence, suggesting their use as nutraceutical foods in preventing and controlling these life-threatening conditions and diseases.


Subject(s)
Agaricales , Neoplasms , Antiviral Agents , Dietary Supplements , Neoplasms/drug therapy , Polysaccharides
SELECTION OF CITATIONS
SEARCH DETAIL
...