Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Dev Cell ; 58(21): 2195-2205.e5, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37647897

ABSTRACT

Brown adipose tissue (BAT) is a thermogenic organ that protects animals against hypothermia and obesity. BAT derives from the multipotent paraxial mesoderm; however, the identity of embryonic brown fat progenitor cells and regulators of adipogenic commitment are unclear. Here, we performed single-cell gene expression analyses of mesenchymal cells during mouse embryogenesis with a focus on BAT development. We identified cell populations associated with the development of BAT, including Dpp4+ cells that emerge at the onset of adipogenic commitment. Immunostaining and lineage-tracing studies show that Dpp4+ cells constitute the BAT fascia and contribute minorly as adipocyte progenitors. Additionally, we identified the transcription factor GATA6 as a marker of brown adipogenic progenitor cells. Deletion of Gata6 in the brown fat lineage resulted in a striking loss of BAT. Together, these results identify progenitor and transitional cells in the brown adipose lineage and define a crucial role for GATA6 in BAT development.


Subject(s)
Adipocytes, Brown , Dipeptidyl Peptidase 4 , Animals , Mice , Adipocytes, Brown/metabolism , Adipogenesis , Adipose Tissue, Brown/metabolism , Dipeptidyl Peptidase 4/metabolism , Obesity/metabolism , Thermogenesis/genetics
2.
Cell Rep ; 35(7): 109128, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34010646

ABSTRACT

Organismal stressors such as cold exposure require a systemic response to maintain body temperature. Brown adipose tissue (BAT) is a key thermogenic tissue in mammals that protects against hypothermia in response to cold exposure. Defining the complex interplay of multiple organ systems in this response is fundamental to our understanding of adipose tissue thermogenesis. In this study, we identify a role for hepatic insulin signaling via AKT in the adaptive response to cold stress and show that liver AKT is an essential cell-nonautonomous regulator of adipocyte lipolysis and BAT function. Mechanistically, inhibition of forkhead box O1 (FOXO1) by AKT controls BAT thermogenesis by enhancing catecholamine-induced lipolysis in the white adipose tissue (WAT) and increasing circulating fibroblast growth factor 21 (FGF21). Our data identify a role for hepatic insulin signaling via the AKT-FOXO1 axis in regulating WAT lipolysis, promoting BAT thermogenic capacity, and ensuring a proper thermogenic response to acute cold exposure.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Fibroblast Growth Factors/metabolism , Liver/pathology , Proto-Oncogene Proteins c-akt/metabolism , Thermogenesis/genetics , Animals , Mice
3.
Am J Physiol Endocrinol Metab ; 320(6): E1148-E1157, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33870712

ABSTRACT

The cytokine interleukin 4 (IL-4) can increase beige adipogenesis in adult rodents. However, neonatal animals use a distinct adipocyte precursor compartment for adipogenesis as compared with adults. In this study, we address whether IL-4 can induce persistent effects on adipose tissue when administered subcutaneously in the interscapular region during the neonatal period in Sprague-Dawley rats. We injected IL-4 into neonatal male rats during postnatal days 1-6, followed by analysis of adipose tissue and adipocyte precursors at 2 wk and 10 wk of age. Adipocyte precursors were cultured and subjected to differentiation in vitro. We found that a short and transient IL-4 exposure in neonates upregulated uncoupling protein 1 (Ucp1) mRNA expression and decreased fat cell size in subcutaneous white adipose tissue (WAT). Adipocyte precursors from mature rats that had been treated with IL-4 as neonates displayed a decrease in adiponectin (Adipoq) but no change in Ucp1 expression, as compared with controls. Thus, neonatal IL-4 induces acute beige adipogenesis and decreases adipogenic differentiation capacity long term. Overall, these findings indicate that the neonatal period is critical for adipocyte development and may influence the later onset of obesity.NEW & NOTEWORTHY We used neonatal injections in rat to show that IL-4 decreases adipogenesis and increases browning of white fat. In adulthood, adipocyte precursors show persistently decreased adipogenesis but not increased browning. These studies in the neonate are the first, to our knowledge, to show that IL-4 can have long-lasting effects.


Subject(s)
Adipogenesis/drug effects , Aging/metabolism , Interleukin-4/pharmacology , Adipocytes/drug effects , Adipocytes/physiology , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Aging/drug effects , Animals , Animals, Newborn , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Female , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Time Factors
4.
Cell Rep ; 30(9): 2869-2878.e4, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32130892

ABSTRACT

Brown adipose tissue (BAT) activity protects animals against hypothermia and represents a potential therapeutic target to combat obesity. The transcription factor early B cell factor-2 (EBF2) promotes brown adipocyte differentiation, but its roles in maintaining brown adipocyte fate and in stimulating BAT recruitment during cold exposure were unknown. We find that the deletion of Ebf2 in adipocytes of mice ablates BAT character and function, resulting in cold intolerance. Unexpectedly, prolonged exposure to cold restores the thermogenic profile and function of Ebf2 mutant BAT. Enhancer profiling and genetic assays identified EBF1 as a candidate regulator of the cold response in BAT. Adipocyte-specific deletion of both Ebf1 and Ebf2 abolishes BAT recruitment during chronic cold exposure. Mechanistically, EBF1 and EBF2 promote thermogenic gene transcription through increasing the expression and activity of ERRα and PGC1α. Together, these studies demonstrate that EBF proteins specify the developmental fate and control the adaptive cold response of brown adipocytes.


Subject(s)
Adipocytes, Brown/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Thermogenesis/genetics , Adipose Tissue, Brown/metabolism , Animals , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Cold Temperature , Diet, High-Fat , Gene Expression Regulation , Mice , NIH 3T3 Cells , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Receptors, Estrogen , Transcription, Genetic , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , ERRalpha Estrogen-Related Receptor
5.
ACS Nano ; 13(7): 7627-7643, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31194909

ABSTRACT

The vasculature is an essential component of the circulatory system that plays a vital role in the development, homeostasis, and disease of various organs in the human body. The ability to emulate the architecture and transport function of blood vessels in the integrated context of their associated organs represents an important requirement for studying a wide range of physiological processes. Traditional in vitro models of the vasculature, however, largely fail to offer such capabilities. Here we combine microfluidic three-dimensional (3D) cell culture with the principle of vasculogenic self-assembly to engineer perfusable 3D microvascular beds in vitro. Our system is created in a micropatterned hydrogel construct housed in an elastomeric microdevice that enables coculture of primary human vascular endothelial cells and fibroblasts to achieve de novo formation, anastomosis, and controlled perfusion of 3D vascular networks. An open-top chamber design adopted in this hybrid platform also makes it possible to integrate the microengineered 3D vasculature with other cell types to recapitulate organ-specific cellular heterogeneity and structural organization of vascularized human tissues. Using these capabilities, we developed stem cell-derived microphysiological models of vascularized human adipose tissue and the blood-retinal barrier. Our approach was also leveraged to construct a 3D organotypic model of vascularized human lung adenocarcinoma as a high-content drug screening platform to simulate intravascular delivery, tumor-killing effects, and vascular toxicity of a clinical chemotherapeutic agent. Furthermore, we demonstrated the potential of our platform for applications in nanomedicine by creating microengineered models of vascular inflammation to evaluate a nanoengineered drug delivery system based on active targeting liposomal nanocarriers. These results represent a significant improvement in our ability to model the complexity of native human tissues and may provide a basis for developing predictive preclinical models for biopharmaceutical applications.


Subject(s)
Adenocarcinoma of Lung/pathology , Cell Culture Techniques , Cell Engineering , Endothelial Cells/cytology , Fibroblasts/cytology , Microfluidic Analytical Techniques , Adenocarcinoma of Lung/blood supply , Humans , Hydrogels/chemistry , Microcirculation
6.
Cell Metab ; 30(1): 174-189.e5, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31155495

ABSTRACT

The precursor cells for metabolically beneficial beige adipocytes can alternatively become fibrogenic and contribute to adipose fibrosis. We found that cold exposure or ß3-adrenergic agonist treatment of mice decreased the fibrogenic profile of precursor cells and stimulated beige adipocyte differentiation. This fibrogenic-to-adipogenic transition was impaired in aged animals, correlating with reduced adipocyte expression of the transcription factor PRDM16. Genetic loss of Prdm16 mimicked the effect of aging in promoting fibrosis, whereas increasing PRDM16 in aged mice decreased fibrosis and restored beige adipose development. PRDM16-expressing adipose cells secreted the metabolite ß-hydroxybutyrate (BHB), which blocked precursor fibrogenesis and facilitated beige adipogenesis. BHB catabolism in precursor cells, mediated by BDH1, was required for beige fat differentiation in vivo. Finally, dietary BHB supplementation in aged animals reduced adipose fibrosis and promoted beige fat formation. Together, our results demonstrate that adipocytes secrete a metabolite signal that controls beige fat remodeling.


Subject(s)
Adipocytes/metabolism , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , 3-Hydroxybutyric Acid/pharmacology , Adipocytes/drug effects , Adipogenesis/drug effects , Adipogenesis/genetics , Adipose Tissue, Beige/drug effects , Adipose Tissue, Beige/metabolism , Animals , Blotting, Western , DNA-Binding Proteins/genetics , Flow Cytometry , Humans , In Vitro Techniques , Male , Mass Spectrometry , Mice , Transcription Factors/genetics
7.
EMBO J ; 36(11): 1528-1542, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28408438

ABSTRACT

Brown adipose has the potential to counteract obesity, and thus, identifying signaling pathways that regulate the activity of this tissue is of great clinical interest. PRDM16 is a transcription factor that activates brown fat-specific genes while repressing white fat and muscle-specific genes in adipocytes. Whether PRDM16 also controls other gene programs to regulate adipocyte function was unclear. Here, we identify a novel role for PRDM16 in suppressing type I interferon (IFN)-stimulated genes (ISGs), including Stat1, in adipocytes in vitro and in vivo Ectopic activation of type I IFN signaling in brown adipocytes induces mitochondrial dysfunction and reduces uncoupling protein 1 (UCP1) expression. Prdm16-deficient adipose displays an exaggerated response to type I IFN, including higher STAT1 levels and reduced mitochondrial gene expression. Mechanistically, PRDM16 represses ISGs through binding to promoter regions of these genes and blocking the activating function of IFN regulatory factor 1 (IRF1). Together, these data indicate that PRDM16 diminishes responsiveness to type I IFN in adipose cells to promote thermogenic and mitochondrial function.


Subject(s)
Adipocytes/physiology , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Interferon Regulatory Factor-1/antagonists & inhibitors , Interferon Type I/metabolism , Mitochondria/metabolism , Thermogenesis , Transcription Factors/metabolism , Animals , Mice , STAT1 Transcription Factor/antagonists & inhibitors , Uncoupling Protein 1/metabolism
8.
Genes Dev ; 31(7): 660-673, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28428261

ABSTRACT

The transcription factor early B-cell factor 2 (EBF2) is an essential mediator of brown adipocyte commitment and terminal differentiation. However, the mechanisms by which EBF2 regulates chromatin to activate brown fat-specific genes in adipocytes were unknown. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by deep sequencing) analyses in brown adipose tissue showed that EBF2 binds and regulates the activity of lineage-specific enhancers. Mechanistically, EBF2 physically interacts with the chromatin remodeler BRG1 and the BAF chromatin remodeling complex in brown adipocytes. We identified the histone reader protein DPF3 as a brown fat-selective component of the BAF complex that was required for brown fat gene programming and mitochondrial function. Loss of DPF3 in brown adipocytes reduced chromatin accessibility at EBF2-bound enhancers and led to a decrease in basal and catecholamine-stimulated expression of brown fat-selective genes. Notably, Dpf3 is a direct transcriptional target of EBF2 in brown adipocytes, thereby establishing a regulatory module through which EBF2 activates and also recruits DPF3-anchored BAF complexes to chromatin. Together, these results reveal a novel mechanism by which EBF2 cooperates with a tissue-specific chromatin remodeling complex to activate brown fat identity genes.


Subject(s)
Adipogenesis/genetics , Adipose Tissue, Brown/cytology , Basic Helix-Loop-Helix Transcription Factors/physiology , Chromatin Assembly and Disassembly , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , Histones/metabolism , Transcription Factors/genetics , Adipose Tissue, Brown/metabolism , Animals , Cell Lineage/genetics , Cells, Cultured , Gene Expression Regulation , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription, Genetic
9.
Cell Metab ; 23(6): 1167-1184, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27238639

ABSTRACT

The transcriptional regulators Ebf2 and Prdm16 establish and maintain the brown and/or beige fat cell identity. However, the mechanisms operating in white adipocytes to suppress the thermogenic gene program and maintain an energy-storing phenotype are less understood. Here, we report that the transcriptional regulator Zfp423 is critical for maintaining white adipocyte identity through suppression of the thermogenic gene program. Zfp423 expression is enriched in white versus brown adipocytes and suppressed upon cold exposure. Doxycycline-inducible inactivation of Zfp423 in mature adipocytes, combined with ß-adrenergic stimulation, triggers a conversion of differentiated adiponectin-expressing inguinal and gonadal adipocytes into beige-like adipocytes; this reprogramming event is sufficient to prevent and reverse diet-induced obesity and insulin resistance. Mechanistically, Zfp423 acts in adipocytes to inhibit the activity of Ebf2 and suppress Prdm16 activation. These data identify Zfp423 as a molecular brake on adipocyte thermogenesis and suggest a therapeutic strategy to unlock the thermogenic potential of white adipocytes in obesity.


Subject(s)
Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , DNA-Binding Proteins/metabolism , Thermogenesis/genetics , Transcription Factors/metabolism , Adiponectin/metabolism , Aging/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Morphogenetic Proteins/metabolism , Cold Temperature , Diet, High-Fat , Glucose Intolerance , Glucose Tolerance Test , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Obesity/metabolism , Obesity/pathology , Protein Binding , Receptors, Adrenergic, beta-3/metabolism , Signal Transduction , Transcription, Genetic , Weight Gain
10.
Mol Metab ; 5(1): 57-65, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26844207

ABSTRACT

OBJECTIVE: The induction of beige/brite adipose cells in white adipose tissue (WAT) is associated with protection against high fat diet-induced obesity and insulin resistance in animals. The helix-loop-helix transcription factor Early B-Cell Factor-2 (EBF2) regulates brown adipose tissue development. Here, we asked if EBF2 regulates beige fat cell biogenesis and protects animals against obesity. METHODS: In addition to primary cell culture studies, we used ​Ebf2 knockout mice and mice overexpressing EBF2 in the adipose tissue to study the necessity and sufficiency of EBF2 to induce beiging in vivo. RESULTS: We found that EBF2 is required for beige adipocyte development in mice. Subcutaneous WAT or primary adipose cell cultures from Ebf2 knockout mice did not induce Uncoupling Protein 1 (UCP1) or a thermogenic program following adrenergic stimulation. Conversely, over-expression of EBF2 in adipocyte cultures induced UCP1 expression and a brown-like/beige fat-selective differentiation program. Transgenic expression of Ebf2 in adipose tissues robustly stimulated beige adipocyte development in the WAT of mice, even while housed at thermoneutrality. EBF2 overexpression was sufficient to increase mitochondrial function in WAT and protect animals against high fat diet-induced weight gain. CONCLUSIONS: Taken together, our results demonstrate that EBF2 controls the beiging process and suggest that activation of EBF2 in WAT could be used to reduce obesity.

11.
Genes Dev ; 29(3): 298-307, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25644604

ABSTRACT

PR (PRD1-BF1-RIZ1 homologous) domain-containing 16 (PRDM16) drives a brown fat differentiation program, but the mechanisms by which PRDM16 activates brown fat-selective genes have been unclear. Through chromatin immunoprecipitation (ChIP) followed by deep sequencing (ChIP-seq) analyses in brown adipose tissue (BAT), we reveal that PRDM16 binding is highly enriched at a broad set of brown fat-selective genes. Importantly, we found that PRDM16 physically binds to MED1, a component of the Mediator complex, and recruits it to superenhancers at brown fat-selective genes. PRDM16 deficiency in BAT reduces MED1 binding at PRDM16 target sites and causes a fundamental change in chromatin architecture at key brown fat-selective genes. Together, these data indicate that PRDM16 controls chromatin architecture and superenhancer activity in BAT.


Subject(s)
Adipose Tissue, Brown/metabolism , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Mediator Complex Subunit 1/metabolism , Transcription Factors/metabolism , Transcription, Genetic/physiology , Animals , Chromatin/chemistry , Chromatin/genetics , Enhancer Elements, Genetic , Mice
12.
Temperature (Austin) ; 2(1): 65-72, 2015.
Article in English | MEDLINE | ID: mdl-27227007

ABSTRACT

The PR-domain containing 16 (Prdm16) protein is a powerful inducer of the thermogenic phenotype in fat cells. In both developmental (brown) and induced (beige) thermogenic adipose tissue, Prdm16 has a critical role in maintaining proper tissue structure and function. It has roles throughout the course of differentiation, beginning with lineage determination activity in precursor cells, and continuing with coactivator functions that enable and maintain thermogenic gene expression. These abilities are primarily mediated by interactions with other adipogenic factors, suggesting that Prdm16 acts to coordinate the overall brown adipose phenotype. Mouse models have confirmed that thermogenic adipose depends upon Prdm16, and that this type of fat tissue provides substantial metabolic protection against the harmful effects of a high fat/high energy diet. Activation of Prdm16, therefore, holds promise for stimulating thermogenesis in fat cells to reduce human obesity and its complications.

13.
Hum Mol Genet ; 23(18): 4995-5008, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24833719

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disease that causes death of motor neurons. ALS patients and mouse models of familial ALS display organismal level metabolic dysfunction, which includes increased energy expenditure despite decreased lean mass. The pathophysiological relevance of abnormal energy homeostasis to motor neuron disease remains unclear. Leptin is an adipocyte-derived hormone that regulates whole-animal energy expenditure. Here, we report that placing mutant superoxide dismutase 1 (SOD1) mice in a leptin-deficient background improves energy homeostasis and slows disease progression. Leptin-deficient mutant SOD1 mice possess increased bodyweight and fat mass, as well as decreased energy expenditure. These observations coincide with enhanced survival, improved strength and decreased motor neuron loss. These results suggest that altering whole-body energy metabolism in mutant SOD1 mice can mitigate disease progression. We propose that manipulations that increase fat mass and reduce energy expenditure will be beneficial in the setting of motor neuron disease.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Leptin/deficiency , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Body Weight , Disease Models, Animal , Energy Metabolism , Humans , Male , Mice , Motor Neurons/metabolism , Muscle, Skeletal/metabolism , Superoxide Dismutase-1
14.
Cell Metab ; 19(4): 593-604, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24703692

ABSTRACT

Prdm16 is a transcription factor that regulates the thermogenic gene program in brown and beige adipocytes. However, whether Prdm16 is required for the development or physiological function of brown adipose tissue (BAT) in vivo has been unclear. By analyzing mice that selectively lacked Prdm16 in the brown adipose lineage, we found that Prdm16 was dispensable for embryonic BAT development. However, Prdm16 was required in young mice to suppress the expression of white-fat-selective genes in BAT through recruitment of the histone methyltransferase Ehmt1. Additionally, Prdm16 deficiency caused a severe adult-onset decline in the thermogenic character of interscapular BAT. This resulted in BAT dysfunction and cold sensitivity but did not predispose the animals to obesity. Interestingly, the loss of brown fat identity due to ablation of Prdm16 was accelerated by concurrent deletion of the closely related Prdm3 gene. Together, these results show that Prdm16 and Prdm3 control postnatal BAT identity and function.


Subject(s)
Adipocytes, Brown/physiology , Aging/physiology , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental/genetics , Histone-Lysine N-Methyltransferase/metabolism , Transcription Factors/metabolism , Adipocytes, Brown/metabolism , Analysis of Variance , Animals , Blotting, Western , Chromatin Immunoprecipitation , DNA-Binding Proteins/genetics , Flow Cytometry , Histological Techniques , Mice , Mice, Knockout , Microarray Analysis , Real-Time Polymerase Chain Reaction , Transcription Factors/genetics
16.
Cell Metab ; 17(4): 562-74, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23499423

ABSTRACT

The master transcription factor Pparγ regulates the general differentiation program of both brown and white adipocytes. However, it has been unclear whether Pparγ also controls fat lineage-specific characteristics. Here, we show that early B cell factor-2 (Ebf2) regulates Pparγ binding activity to determine brown versus white adipocyte identity. The Ebf DNA-binding motif was highly enriched within brown adipose-specific Pparγ binding sites that we identified by genome-wide ChIP-Seq. Of the Ebf isoforms, Ebf2 was selectively expressed in brown relative to white adipocytes and was bound at brown adipose-specific Pparγ target genes. When expressed in myoblasts or white preadipose cells, Ebf2 recruited Pparγ to its brown-selective binding sites and reprogrammed cells to a brown fat fate. Brown adipose cells and tissue from Ebf2-deficient mice displayed a loss of brown-specific characteristics and thermogenic capacity. Together, these results identify Ebf2 as a key transcriptional regulator of brown fat cell fate and function.


Subject(s)
Adipocytes, Brown/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Adipocytes, Brown/cytology , Animals , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Binding Sites , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , High-Throughput Nucleotide Sequencing , Mice , Mice, Knockout , PPAR gamma/metabolism , Protein Binding , Protein Isoforms/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
17.
Skelet Muscle ; 2(1): 6, 2012 05 19.
Article in English | MEDLINE | ID: mdl-22541644

ABSTRACT

BACKGROUND: Mice lacking MyoD exhibit delayed skeletal muscle regeneration and markedly enhanced numbers of satellite cells. Myoblasts isolated from MyoD-/- myoblasts proliferate more rapidly than wild type myoblasts, display a dramatic delay in differentiation, and continue to incorporate BrdU after serum withdrawal. METHODS: Primary myoblasts isolated from wild type and MyoD-/- mutant mice were examined by microarray analysis and further characterized by cell and molecular experiments in cell culture. RESULTS: We found that NF-κB, a key regulator of cell-cycle withdrawal and differentiation, aberrantly maintains nuclear localization and transcriptional activity in MyoD-/- myoblasts. As a result, expression of cyclin D is maintained during serum withdrawal, inhibiting expression of muscle-specific genes and progression through the differentiation program. Sustained nuclear localization of cyclin E, and a concomitant increase in cdk2 activity maintains S-phase entry in MyoD-/- myoblasts even in the absence of mitogens. Importantly, this deficit was rescued by forced expression of IκBαSR, a non-degradable mutant of IκBα, indicating that inhibition of NF-κB is sufficient to induce terminal myogenic differentiation in the absence of MyoD. CONCLUSION: MyoD-induced cytoplasmic relocalization of NF-κB is an essential step in linking cell-cycle withdrawal to the terminal differentiation of skeletal myoblasts. These results provide important insight into the unique functions of MyoD in regulating the switch from progenitor proliferation to terminal differentiation.

18.
Mol Cell Biol ; 32(12): 2289-99, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22473998

ABSTRACT

Fibroblastic preadipocyte cells are recruited to differentiate into new adipocytes during the formation and hyperplastic growth of white adipose tissue. Peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipogenesis, is expressed at low levels in preadipocytes, and its levels increase dramatically and rapidly during the differentiation process. However, the mechanisms controlling the dynamic and selective expression of PPARγ in the adipocyte lineage remain largely unknown. We show here that the zinc finger protein Evi1 increases in preadipocytes at the onset of differentiation prior to increases in PPARγ levels. Evi1 expression converts nonadipogenic cells into adipocytes via an increase in the predifferentiation levels of PPARγ2, the adipose-selective isoform of PPARγ. Conversely, loss of Evi1 in preadipocytes blocks the induction of PPARγ2 and suppresses adipocyte differentiation. Evi1 binds with C/EBPß to regulatory sites in the Pparγ locus at early stages of adipocyte differentiation, coincident with the induction of Pparγ2 expression. These results indicate that Evi1 is a key regulator of adipogenic competency.


Subject(s)
Adipocytes/metabolism , Adipogenesis/genetics , CCAAT-Enhancer-Binding Protein-beta , DNA-Binding Proteins , PPAR gamma/genetics , Proto-Oncogenes , Transcription Factors , 3T3-L1 Cells , Adipocytes/cytology , Adipose Tissue, White/cytology , Adipose Tissue, White/metabolism , Animals , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , MDS1 and EVI1 Complex Locus Protein , Mice , PPAR gamma/metabolism , Protein Binding , Proto-Oncogenes/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Gastroenterology ; 141(4): 1463-72, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21704586

ABSTRACT

BACKGROUND & AIMS: Progression of diseases of the exocrine pancreas, which include pancreatitis and cancer, is associated with increased levels of cell stress. Pancreatic acinar cells are involved in development of these diseases and, because of their high level of protein output, they require an efficient, unfolded protein response (UPR) that mediates recovery from endoplasmic reticulum (ER) stress following the accumulation of misfolded proteins. METHODS: To study recovery from ER stress in the exocrine organ, we generated mice with conditional disruption of Xbp1 (a principal component of the UPR) in most adult pancreatic acinar cells (Xbp1fl/fl). We monitored the effects of constitutive ER stress in the exocrine pancreas of these mice. RESULTS: Xbp1-null acinar cells underwent extensive apoptosis, followed by a rapid phase of recovery in the pancreas that included expansion of the centroacinar cell compartment, formation of tubular complexes that contained Hes1- and Sox9-expressing cells, and regeneration of acinar cells that expressed Mist1 from the residual, surviving Xbp1+ cell population. CONCLUSIONS: XBP1 is required for homeostasis of acinar cells in mice; ER stress induces a regenerative response in the pancreas that involves acinar and centroacinar cells, providing the needed capacity for organ recovery from exocrine pancreas disease.


Subject(s)
Cell Proliferation , DNA-Binding Proteins/deficiency , Endoplasmic Reticulum/metabolism , Pancreas, Exocrine/metabolism , Pancreatic Diseases/metabolism , Regeneration , Transcription Factors/deficiency , Animals , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Lineage , DNA-Binding Proteins/genetics , Endoplasmic Reticulum/pathology , Homeodomain Proteins/metabolism , Membrane Proteins/metabolism , Mice , Mice, Knockout , Pancreas, Exocrine/pathology , Pancreatic Diseases/genetics , Pancreatic Diseases/pathology , Protein Serine-Threonine Kinases/metabolism , Regulatory Factor X Transcription Factors , SOX9 Transcription Factor/metabolism , Stress, Physiological , Time Factors , Transcription Factor HES-1 , Transcription Factors/genetics , Unfolded Protein Response , X-Box Binding Protein 1
20.
J Clin Invest ; 121(1): 96-105, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21123942

ABSTRACT

The white adipose organ is composed of both subcutaneous and several intra-abdominal depots. Excess abdominal adiposity is a major risk factor for metabolic disease in rodents and humans, while expansion of subcutaneous fat does not carry the same risks. Brown adipose produces heat as a defense against hypothermia and obesity, and the appearance of brown-like adipocytes within white adipose tissue depots is associated with improved metabolic phenotypes. Thus, understanding the differences in cell biology and function of these different adipose cell types and depots may be critical to the development of new therapies for metabolic disease. Here, we found that Prdm16, a brown adipose determination factor, is selectively expressed in subcutaneous white adipocytes relative to other white fat depots in mice. Transgenic expression of Prdm16 in fat tissue robustly induced the development of brown-like adipocytes in subcutaneous, but not epididymal, adipose depots. Prdm16 transgenic mice displayed increased energy expenditure, limited weight gain, and improved glucose tolerance in response to a high-fat diet. shRNA-mediated depletion of Prdm16 in isolated subcutaneous adipocytes caused a sharp decrease in the expression of thermogenic genes and a reduction in uncoupled cellular respiration. Finally, Prdm16 haploinsufficiency reduced the brown fat phenotype in white adipose tissue stimulated by ß-adrenergic agonists. These results demonstrate that Prdm16 is a cell-autonomous determinant of a brown fat-like gene program and thermogenesis in subcutaneous adipose tissues.


Subject(s)
DNA-Binding Proteins/physiology , Subcutaneous Fat/physiology , Thermogenesis/physiology , Transcription Factors/physiology , Adipose Tissue, Brown/physiology , Animals , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Dietary Fats/administration & dosage , Female , Gene Expression , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Obesity/genetics , Obesity/physiopathology , Obesity/prevention & control , RNA, Small Interfering/genetics , Thermogenesis/genetics , Tissue Distribution , Transcription Factors/deficiency , Transcription Factors/genetics , Weight Gain/genetics , Weight Gain/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...