Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Cureus ; 14(9): e28809, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36225407

ABSTRACT

Treatment of spinal metastasis has attracted much attention globally, especially in Japan, with the advancement of cancer therapy. Among the metastases, those from breast and prostate cancers may be more important than others considering the high incidence of bone metastasis and the long-term prognosis. This condition often results in surgical procedures of spinal metastases to improve cancer patients' quality of life (QOL). In the present case, a patient with lumbar metastasis of breast cancer presented with right L5 nerve palsy after palliative laminectomy surgery with posterior fusion. The nerve palsy had improved after additional bone resection around the right L5 root. The mechanism of this postoperative leg paralysis was subclinical nerve root damage due to the narrowing of the intervertebral foramen caused by the tumor protrusion like lumber disc hernia and the stretching of the nerve roots caused by the posterior shift of the dural tube. When performing decompression and fixation of a metastatic spine showing a herniated tumor formed by a tumor protruding posteriorly into the intervertebral foraminal space, sufficient tumor mass debulking should be considered to avoid postoperative intervertebral foraminal stenosis.

3.
Spine Surg Relat Res ; 6(3): 303-309, 2022.
Article in English | MEDLINE | ID: mdl-35800633

ABSTRACT

Introduction: Wrong-site spine surgery is an incident that could result in possible severe complications. In this present spinal surgery, the accurate spinal level is confirmed via preoperative or intraoperative radiographic marking. However, the location of radiographic marking has been determined from the manual palpation on the landmarks of the body surface. As a result, severe spine deformity can make it hard to identify the spinal level by manual palpation, thus leading to misidentification of the spinal level.Recently, the use of mixed reality in spine surgery is gradually increasing. In this study, we will demonstrate a head-mounted display (HMD) device that can project a hologram (3D image) of the patient's bone onto the actual patient's body to improve the accuracy of level identification for spine surgery. Technical Note: 3D CT images are created preoperatively, and the bone's STL data (3D data) are generated with the workstation. The created STL data are downloaded to the augmented reality software Holoeyes, installed on the HMD. Through this device, surgeons can view the hologram (3D image) of a patient's bone overlaying on an actual patient's body.We temporally estimated the spinous process level only by manual palpation without an HMD. Then, we estimated the spinous process level again after matching this hologram to a real bone with an HMD. The accuracy of the level identification with an HMD and without an HMD was examined by radiographic marking in order to evaluate the misidentification rate of the level. Without an HMD, the misidentification rate of the level was at 26.5%, while with it, the rate was reduced to 14.3%. Conclusions: On preoperative marking, an HMD-projecting bone image onto a patient's body could allow us to estimate the spinal level more accurately. Identification of the spinal level using mixed reality is effective in preventing wrong-site spine surgery.

4.
J Cell Biol ; 216(8): 2533-2550, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28642362

ABSTRACT

Understanding how the transcription factor signal transducer and activator of transcription-3 (STAT3) controls glial scar formation may have important clinical implications. We show that astrocytic STAT3 is associated with greater amounts of secreted MMP2, a crucial protease in scar formation. Moreover, we report that STAT3 inhibits the small GTPase RhoA and thereby controls actomyosin tonus, adhesion turnover, and migration of reactive astrocytes, as well as corralling of leukocytes in vitro. The inhibition of RhoA by STAT3 involves ezrin, the phosphorylation of which is reduced in STAT3-CKO astrocytes. Reduction of phosphatase and tensin homologue (PTEN) levels in STAT3-CKO rescues reactive astrocytes dynamics in vitro. By specific targeting of lesion-proximal, reactive astrocytes in Nestin-Cre mice, we show that reduction of PTEN rescues glial scar formation in Nestin-Stat3+/- mice. These findings reveal novel intracellular signaling mechanisms underlying the contribution of reactive astrocyte dynamics to glial scar formation.


Subject(s)
Astrocytes/enzymology , Cicatrix/enzymology , Neuroglia/enzymology , STAT3 Transcription Factor/metabolism , Spinal Cord Injuries/enzymology , Spinal Cord/enzymology , Wounds, Stab/enzymology , rho GTP-Binding Proteins/metabolism , Actomyosin/metabolism , Animals , Animals, Newborn , Astrocytes/pathology , Cell Adhesion , Cell Movement , Cells, Cultured , Cicatrix/genetics , Cicatrix/pathology , Coculture Techniques , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Genotype , Integrases/genetics , Macrophages/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Nestin/genetics , Neuroglia/pathology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phenotype , Phosphorylation , Proteolysis , STAT3 Transcription Factor/deficiency , STAT3 Transcription Factor/genetics , Signal Transduction , Spinal Cord/pathology , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology , Transfection , Wounds, Stab/genetics , Wounds, Stab/pathology , rho GTP-Binding Proteins/genetics , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...