Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38334522

ABSTRACT

The progress in artificial bone research is crucial for addressing fractures and bone defects in the aging population. However, challenges persist in terms of biocompatibility and structural complexity. Nanotechnology provides a promising avenue by which to overcome these challenges, with nano-ferrite particles (NFPs) exhibiting superparamagnetic properties. The ability to control cell positioning using a magnetic field opens up new possibilities for customizing artificial bones with specific shapes. This study explores the biological effects of NFPs on osteoblast-like cell lines (MC3T3-E1), including key analyses, such as cell viability, cellular uptake of NFPs, calcification processes, cell migration under external magnetic field conditions, and three-dimensional modeling. The results indicate that the impact of NFPs on cell proliferation is negligible. Fluorescence and transmission electron microscopy validated the cellular uptake of NFPs, demonstrating the potential for precise cell positioning through an external magnetic field. Under calcification-inducing conditions, the cells exhibited sustained calcification ability even in the presence of NFPs. The cell movement analysis observed the controlled movement of NFP-absorbing cells under an external magnetic field. Applying a magnetic field along the z-axis induced the three-dimensional shaping of cells incorporating NFPs, resulting in well-arranged z-axis directional patterns. In this study, NFPs demonstrated excellent biocompatibility and controllability under an external magnetic field, laying the foundation for innovative treatment strategies for customizing artificial bones.

2.
Nanomaterials (Basel) ; 13(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36677997

ABSTRACT

With the advent of nanotechnology, the use of nanoparticles as drug delivery system (DDS) has attracted great interest. We aimed to apply carbon nanohorns (CNHs) as DDS in the development of new treatments for bone diseases. We evaluated the in vitro and in vivo cellular responses of CNHs in bone-related cells compared with carbon blacks (CBs), which are similar in particle size but differ in surface and structural morphologies. Although in vitro experiments revealed that both CNHs and CBs were incorporated into the lysosomes of RAW264-induced osteoclast-like cells (OCs) and MC3T3-E1 osteoblast-like cells (OBs), no severe cytotoxicity was observed. CNHs reduced the tartrate-resistant acid phosphatase activity and expression of the differentiation marker genes in OCs at noncytotoxic concentrations, whereas the alkaline phosphatase activity and differentiation of OBs increased. Under calcification of OBs, CNHs increased the number of calcified nodules and were intra- and extracellularly incorporated into calcified vesicles to form crystal nuclei. The in vivo experiments showed significant promotion of bone regeneration in the CNH group alone, with localized CNHs being found in the bone matrix and lacunae. The suppression of OCs and promotion of OBs suggested that CNHs may be effective against bone diseases and could be applied as DDS.

3.
Int J Mol Sci ; 22(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299372

ABSTRACT

Many biomaterials have been evaluated using cultured cells. In particular, osteoblast-like cells are often used to evaluate the osteocompatibility, hard-tissue-regeneration, osteoconductive, and osteoinductive characteristics of biomaterials. However, the evaluation of biomaterial osteogenesis-inducing capacity using osteoblast-like cells is not standardized; instead, it is performed under laboratory-specific culture conditions with different culture media. However, the effect of different media conditions on bone formation has not been investigated. Here, we aimed to evaluate the osteogenesis of MC3T3-E1 cells, one of the most commonly used osteoblast-like cell lines for osteogenesis evaluation, and assayed cell proliferation, alkaline phosphatase activity, expression of osteoblast markers, and calcification under varying culture media conditions. Furthermore, the various media conditions were tested in uncoated plates and plates coated with collagen type I and poly-L-lysine, highly biocompatible molecules commonly used as pseudobiomaterials. We found that the type of base medium, the presence or absence of vitamin C, and the freshness of the medium may affect biomaterial regeneration. We posit that an in vitro model that recapitulates in vivo bone formation should be established before evaluating biomaterials.


Subject(s)
Culture Media, Conditioned/pharmacology , Osteogenesis/drug effects , 3T3 Cells , Alkaline Phosphatase/metabolism , Animals , Ascorbic Acid/pharmacology , Biocompatible Materials/pharmacology , Biomarkers/metabolism , Cell Line , Cell Proliferation/drug effects , Collagen Type I/metabolism , Mice , Osteoblasts/drug effects , Osteoblasts/metabolism
4.
Pharmacology ; 106(1-2): 91-105, 2021.
Article in English | MEDLINE | ID: mdl-33113543

ABSTRACT

BACKGROUND/AIMS: Monensin, an Na ionophore, increases intracellular Na ([Na]i). Alteration of [Na]i influences ion transport through the sarcolemmal membrane. So far, the effects of monensin on ventricular myocytes have not been examined in detail. The main objective of this study was to elucidate the mechanism via which monensin-evoked increases in [Na]i affect the membrane potential and currents in ventricular myocytes of guinea pigs. METHODS: Membrane potentials and currents were measured using the whole-cell patch-clamp technique in single myocytes. The concentration of intracellular Ca ([Ca]i) was evaluated by measuring fluorescence intensity of Fluo-4. RESULTS: Monensin (10-5M) shortened the action potential duration (APD) and reduced the amplitude of the plateau phase. In addition, monensin decreased the sodium current (INa) and shifted the inactivation curve to the hyperpolarized direction. Moreover, it decreased the L-type calcium current (ICa). However, this effect was attenuated by increasing the buffering capacity of [Ca]i. The Na-Ca exchange current (INa-Ca) was activated particularly in the reverse mode. Na-K pump current (INa-K) was also activated. Notably, the inward rectifying K current (IK1) was not affected, and the change in the delayed outward K current (IK) was not evident. CONCLUSION: These results suggest that the monensin-induced shortened APD and reduced amplitude of the plateau phase are primarily due to the decrease in the ICa, the activation of the reverse mode of INa-Ca, and the increased INa-K, and second due to the decreased INa. The IK and the IK1 may not be associated with the abovementioned changes induced by monensin. The elevation of [Na]i can exert multiple influences on electrophysiological phenomena in cardiac myocytes.


Subject(s)
Monensin/pharmacology , Myocytes, Cardiac/drug effects , Sodium Ionophores/pharmacology , Sodium/metabolism , Action Potentials/drug effects , Animals , Calcium/metabolism , Cardiotonic Agents/pharmacology , Cations/metabolism , Cells, Cultured , Electrophysiologic Techniques, Cardiac , Guinea Pigs , Intracellular Space/drug effects , Intracellular Space/metabolism , Male , Membrane Potentials/drug effects , Microscopy, Fluorescence , Myocytes, Cardiac/metabolism , Ouabain/pharmacology , Patch-Clamp Techniques , Potassium/metabolism , Sodium-Calcium Exchanger/drug effects , Sodium-Potassium-Exchanging ATPase/drug effects
5.
Nanomaterials (Basel) ; 10(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674394

ABSTRACT

One of the greatest challenges to overcome in the pursuit of the medical application of carbon nanomaterials (CNMs) is safety. Particularly, when considering the use of CNMs in drug delivery systems (DDSs), evaluation of safety at the accumulation site is an essential step. In this study, we evaluated the toxicity of carbon nanohorns (CNHs), which are potential DDSs, using human lymph node endothelial cells that have been reported to accumulate CNMs, as a comparison to fibrous, multi-walled carbon nanotubes (MWCNTs) and particulate carbon black (CB). The effect of different surface characteristics was also evaluated using two types of CNHs (untreated and oxidized). In the fibrous MWCNT, cell growth suppression, as well as expression of inflammatory cytokine genes was observed, as in previous reports. In contrast, no significant toxicity was observed for particulate CB and CNHs, which was different from the report of CB cytotoxicity in vascular endothelial cells. These results show that (1) lymph endothelial cells need to be tested separately from other endothelial cells for safety evaluation of nanomaterials, and (2) the potential of CNHs as DDSs.

6.
BMC Cancer ; 20(1): 25, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31914969

ABSTRACT

BACKGROUND: There are many types of therapies for cancer. In these days, immunotherapies, especially immune checkpoint inhibitors, are focused on. Though many types of immune checkpoint inhibitors are there, the difference of effect and its mechanism are unclear. Some reports suggest the response rate of anti-PD-1 antibody is superior to that of anti-PD-L1 antibody and could potentially produce different mechanisms of action. On the other hand, Treg also express PD-1; however, their relationship remains unclear. METHODS: In this study, we used osteosarcoma cell lines in vitro and osteosarcoma mouse model in vivo. In vitro, we analyzed the effect of IFNγ for expression of PD-L1 on the surface of cell lines by flowcytometry. In vivo, murine osteosarcoma cell line LM8 was subcutaneously transplanted into the dorsum of mice. Mouse anti-PD-1 antibody was intraperitoneally administered. we analysed the effect for survival of anti-PD-1 antibody and proportion of T cells in the tumour by flowcytometry. RESULTS: We discovered that IFNγ increased PD-L1 expression on the surface of osteosarcoma cell lines. In assessing the relationship between anti-PD-1 antibody and Treg, we discovered the administration of anti-PD-1 antibody suppresses increases in tumour volume and prolongs overall survival time. In the tumour microenvironment, we found that the administration of anti-PD-1 antibody decreased Treg within the tumour and increased tumour-infiltrating lymphocytes. CONCLUSIONS: Here we clarify for the first time an additional mechanism of anti-tumour effect-as exerted by anti-PD-1 antibody decreasing Treg- we anticipate that our findings will lead to the development of new methods for cancer treatment.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Animals , Antineoplastic Agents, Immunological/therapeutic use , Cell Line, Tumor , Disease Models, Animal , Gene Expression , Humans , Interferon-gamma/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Neoplasms/mortality , Neoplasms/pathology , Prognosis , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Regulatory/immunology , Treatment Outcome , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
7.
RSC Adv ; 10(55): 33071-33079, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-35515018

ABSTRACT

When cancer metastasizes to bone, the resulting pain and functional disorders due to bone destruction adversely affect the patient's quality of life. We have developed a new cancer metastasis control system consisting of anticancer agents conjugated to carbon fibers (CFs), which are nonbiodegradable, carriers of a wide variety of molecules with extremely high affinity for bone. In the evaluation of cancer suppression effects on Walker 256 cancer cells, cisplatin (CDDP)-conjugated CFs (CF-CDDP) were found to be as effective in cancer suppression as CDDP. In the evaluation of the cancer suppression effects of local injection in the rat model of tibial cancer bone metastasis, similar cancer suppression was noted in the CF-CDDP group and CDDP group; however, blood Pt concentrations were significantly lower in the CF-CDDP group. Experiments with CDDP and CF-CDDP injected into bone actually destroyed by cancer metastases revealed the presence of significantly more newly formed bone tissue with the administration of CF-CDDP. Local administration of CF-CDDP is expected to become the first therapy to suppress cancer growth with low prevalence of adverse reactions, and to repair bone damaged by metastasis.

8.
Int J Nanomedicine ; 14: 6465-6480, 2019.
Article in English | MEDLINE | ID: mdl-31616140

ABSTRACT

PURPOSE: Multiwalled carbon nanotubes (MWCNTs) have been known to enter the circulatory system via the lungs from inhalation exposure; however, its carcinogenicity and subsequent accumulation in other organs have not been adequately reported in the literature. Moreover, the safety of MWCNTs as a biomaterial has remained a matter of debate, particularly when the material enters the circulatory system. To address these problems, we used carcinogenic rasH2 transgenic mice to intravenously administer highly dispersed MWCNTs and to evaluate their carcinogenicity and accumulation in the organs. METHODS: Two types of MWCNTs (thin- and thick-MWCNTs) were intravenously administered at a high dose (approximately 0.7 mg per kg body weight) and low dose (approximately 0.07 mg per kg body weight). RESULTS: MWCNTs showed pancreatic accumulation in 3.2% of mice administered with MWCNTs, but there was no accumulation in other organs. In addition, there was no significant difference in the incidence of tumor among the four MWCNTs-administered groups compared to the vehicle group without MWCNTs administration. Blood tests revealed elevated levels in mean red blood cell volume and mean red blood cell hemoglobin level for the MWCNTs-administered group, in addition to an increase in eotaxin. CONCLUSION: The present study demonstrated that the use of current technology to sufficiently disperse MWCNTs resulted in minimal organ accumulation with no evidence of carcinogenicity.


Subject(s)
Carcinogens/toxicity , Nanotubes, Carbon/toxicity , Administration, Intravenous , Animals , Body Weight , Carcinogenesis/pathology , Cytokines/metabolism , Lung/drug effects , Lung/pathology , Male , Mice, Transgenic , Nanotubes, Carbon/ultrastructure , Survival Analysis , Tissue Distribution/drug effects
9.
Materials (Basel) ; 12(11)2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31212709

ABSTRACT

We evaluated starfish-derived ß-tricalcium phosphate (Sf-TCP) obtained by phosphatization of starfish-bone-derived porous calcium carbonate as a potential bone substitute material. The Sf-TCP had a communicating pore structure with a pore size of approximately 10 µm. Although the porosity of Sf-TCP was similar to that of Cerasorb M (CM)-a commercially available ß-TCP bone filler-the specific surface area was roughly three times larger than that of CM. Observation by scanning electron microscopy showed that pores communicated to the inside of the Sf-TCP. Cell growth tests showed that Sf-TCP improved cell proliferation compared with CM. Cells grown on Sf-TCP showed stretched filopodia and adhered; cells migrated both to the surface and into pores. In vivo, vigorous tissue invasion into pores was observed in Sf-TCP, and more fibrous tissue was observed for Sf-TCP than CM. Moreover, capillary formation into pores was observed for Sf-TCP. Thus, Sf-TCP showed excellent biocompatibility in vitro and more vigorous bone formation in vivo, indicating the possible applications of this material as a bone substitute. In addition, our findings suggested that mimicking the microstructure derived from whole organisms may facilitate the development of superior artificial bone.

10.
Onco Targets Ther ; 12: 2513-2518, 2019.
Article in English | MEDLINE | ID: mdl-31040694

ABSTRACT

PURPOSE: Although both anti-PD-1 antibody and treatments using anti-PD-L1 antibody are currently in clinical use, their therapeutic effects vary according to cancer type. One of the factors accounting for this variability is the expression level of the immune checkpoint molecule that differs between cancer types; thus, it is important to clarify the relationship between clinical outcomes and immune checkpoint molecules for all types of human cancer. The purpose of this study is to evaluate the clinical outcome of osteosarcoma in relation to PD-L1, PRF, GZMB, and IFNγ expression. METHODS: Using 19 clinical specimens of osteosarcoma, we examined the expression of PD-L1, PRF, GZMB, and IFNγ in relation to their clinical outcomes. RESULTS: PD-L1 expression correlated with early metastatic formation in clinical specimens of osteosarcoma, and the group with highly expressed functional markers for T cells such as PRF and GZMB resulted in a long overall survival time. CONCLUSION: This is the first study to elucidate the clinical outcomes of osteosarcoma in relation to PD-L1, PRF, GZMB, and IFNγ expression. This study provides valuable information regarding the clinical indication and prediction of effect for anti-PD-1 antibody in osteosarcoma.

11.
Int J Nanomedicine ; 13: 6079-6088, 2018.
Article in English | MEDLINE | ID: mdl-30323595

ABSTRACT

INTRODUCTION: Carbon nanotubes (CNTs) have various shapes, including needle-like shapes and curled shapes, and the cytotoxicity and carcinogenicity of CNTs differ depending on their shapes and surface modifications. However, the biological responses induced by CNTs and related mechanisms according to the dispersion state of CNTs have not been extensively studied. MATERIALS AND METHODS: We prepared multiwalled CNTs (MWCNTs) showing different dispersions and evaluated these MWCNTs in RAW264 cells to determine cytotoxicity, cellular uptake, and immune responses. Furthermore, RAW264 cells were also used to compare the cellular uptake and cytotoxicity of fibrous MWCNTs and spherical carbon nanohorns (CNHs) exhibiting the same degree of dispersion. RESULTS: Our analysis showed that the cellular uptake, localization, and inflammatory responses of MWCNTs differed depending on the dispersion state. Moreover, there were differences in uptake between MWCNTs and CNHs, even showing the same degree of dispersion. These findings suggested that receptors related to cytotoxicity and immune responses differed depending on the aggregated state of MWCNTs and surface modification with a dispersant. Furthermore, our results suggested that the receptors recognized by the cells differed depending on the particle shape. CONCLUSION: Therefore, to apply MWCNTs as a biomaterial, it is important to determine the carcinogenicity and toxicity of the CNTs and to examine different biological responses induced by varying shapes, dispersion states, and surface modifications of particles.


Subject(s)
Macrophages/cytology , Nanotubes, Carbon/chemistry , Animals , Cell Survival , Cytokines/metabolism , Fluorescent Dyes/metabolism , Inflammation Mediators/metabolism , Macrophages/metabolism , Macrophages/ultrastructure , Mice , Particle Size , RAW 264.7 Cells , Static Electricity
12.
Adv Mater ; 30(4)2018 Jan.
Article in English | MEDLINE | ID: mdl-29215204

ABSTRACT

Titanium plates are widely used in clinical settings because of their high bone affinity. However, owing to their high elastic modulus, these plates are not suitable for bone repair since their proximity to the bone surface for prolonged periods can cause stress shielding, leading to bone embrittlement. In contrast, titanium fiber plates prepared by molding titanium fibers into plates by simultaneously applying compression and shear stress at normal room temperature can have an elastic modulus similar to that of bone cortex, and stress shielding will not occur even when the plate lies flush against the bone's surface. Titanium fibers can form a porous structure suitable for cell adhesion and as a bone repair scaffold. A titanium fiber plate is combined with osteoblasts and shown that the titanium fiber plate is better able to facilitate bone tissue repair than the conventional titanium plate when implanted in rat bone defects. Capable of being used in close contact with bone for a long time, and even capable of promoting bone repair, titanium fiber plates have a wide range of applications, and are expected to make great contributions to clinical management of increasing bone diseases, including bone fracture repair and bone regenerative medicine.


Subject(s)
Titanium/chemistry , Bone Plates , Bone and Bones , Porosity , Stress, Mechanical
13.
Sci Rep ; 6: 20234, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26831950

ABSTRACT

Ecological adaptations to seasonal changes are often observed in the phenotypic traits of plants and animals, and these adaptations are usually expressed through the production of different biochemical end products. In this study, ecological adaptations are observed in a biochemical pathway without alteration of the end products. We present an alternative principal pathway to the characteristic floral scent compound 2-phenylethanol (2PE) in roses. The new pathway is seasonally induced in summer as a heat adaptation that uses rose phenylpyruvate decarboxylase (RyPPDC) as a novel enzyme. RyPPDC transcript levels and the resulting production of 2PE are increased time-dependently under high temperatures. The novel summer pathway produces levels of 2PE that are several orders of magnitude higher than those produced by the previously known pathway. Our results indicate that the alternative principal pathway identified here is a seasonal adaptation for managing the weakened volatility of summer roses.


Subject(s)
Adaptation, Physiological , Flowers/physiology , Phenotype , Rosa/physiology , Seasons , Gene Expression Regulation, Plant , Metabolic Networks and Pathways , Phenylethyl Alcohol/metabolism
14.
Nanomaterials (Basel) ; 6(11)2016 Nov 19.
Article in English | MEDLINE | ID: mdl-28335347

ABSTRACT

The medical applications of carbon nanotubes (CNTs) have garnered much attention. However, evaluating the safety of CNTs remains difficult, and no consensus has been reached. Moreover, assessing the biosafety of multi-walled CNTs (MWCNTs), which can become tangled during manufacturing, is challenging because they do not readily disperse. We studied how the dispersion state of tangled MWCNTs affects their cytotoxicity, using three sonicators. Flotube 9110 (FT9110), tangled MWCNTs, were dispersed in two dispersants (fetal bovine serum and polysorbate 80) using a new type of sonicator (PR-1) and two conventional sonicators. The size and cytotoxicity of the dispersed FT9110 were measured using the BEAS-2B human bronchial epithelial cell line. The PR-1 dispersed the FT9110 to agglomerates <200 nm in diameter; FT9110 dispersed with the PR-1 did not show cytotoxicity regardless of dispersant. The other sonicators dispersed the FT9110 to particles >1000 nm in diameter, and cytotoxicity depended on the dispersant. We found that excluding cells adhered to agglomerated FT9110 before evaluating cytotoxicity can lead to false-positive results. The PR-1 sonicator dispersed tangled FT9110 to many single fibers, which showed lower cytotoxicity than conventionally-sonicated MWCNTs. We suggest that dispersion state should be accounted for when evaluating the cytotoxicity of MWCNTs.

15.
J Plant Physiol ; 169(5): 444-51, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22236980

ABSTRACT

In rose flowers, 2-phenylethanol (2PE) is biosynthesized from l-phenylalanine (l-Phe) via phenylacetaldehyde (PAld) by the actions of two enzymes, pyridoxal-5'-phosphate (PLP)-dependent aromatic amino acid decarboxylase (AADC) and phenylacetaldehyde reductase (PAR). We here report that Rosa 'Yves Piaget' aromatic amino acid aminotransferase produced phenylpyruvic acid (PPA) from l-Phe in isolated petal protoplasts. We have cloned three full length cDNAs (RyAAAT1-3) of aromatic amino acid aminotransferase families based on rose EST database and homology regions. The RyAAATs enzymes were heterogeneously expressed in Escherichia coli and characterized biochemically. The recombinant RyAAAT3 showed the highest activity toward l-Phe in comparison with l-tryptophan, l-tyrosine, d-Phe, glycine, and l-alanine, and showed 9.7-fold higher activity with l-Phe rather than PPA as a substrate. RyAAAT3 had an optimal activity at pH 9 and at 45-55°C with α-ketoglutaric acid, and was found to be a PLP dependent enzyme based on the inhibition test using Carbidopa, an inhibitor of PLP-dependent enzymes. The transcript of RyAAAT3 was expressed in flowers as well as other organs of R. 'Yves Piaget'. RNAi suppression of RyAAAT3 decreased 2PE production, revealing the involvement of RyAAAT3 in 2PE biosynthesis in rose protoplasts and indicating that rose protoplasts have potentially two different 2PE biosynthetic pathways, the AADC route and the new route via PPA from l-Phe.


Subject(s)
Phenylethyl Alcohol/metabolism , Protoplasts/enzymology , Rosa/enzymology , Transaminases/metabolism , Biosynthetic Pathways , Flowers/enzymology , Flowers/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plants, Genetically Modified , Protoplasts/metabolism , Rosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...