Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35408206

ABSTRACT

A taste sensor with lipid/polymer membranes is attracting attention as a method to evaluate taste objectively. However, due to the characteristic of detecting taste by changes in membrane potential, taste sensors cannot measure non-charged bitter substances. Many foods and medicines contain non-charged bitter substances, and it is necessary to quantify these tastes with sensors. Therefore, we have been developing taste sensors to detect bitter tastes caused by non-charged substances such as caffeine. In previous studies, a sensor for detecting bitterness caused by caffeine and theobromine, theophylline, was developed, using a membrane modified with hydroxybenzoic acid (HBA) as the sensing part. The sensor was designed to form intramolecular hydrogen bonds (H-bonds) between the hydroxy group and carboxy group of HBA and to successively cause the intermolecular H-bonds between HBA and caffeine molecules to be measured. However, whether this sensing principle is correct or not cannot be confirmed from the results of taste sensor measurements. Therefore, in this study, we explored the interaction between HBA and caffeine by 1H-nuclear magnetic resonance spectroscopy (NMR). By the 1H NMR detection, we confirmed that both the substances interact with each other. Furthermore, the nuclear Overhauser effect (NOE) of intermolecular spatial conformation in solution was measured, by which 2,6-dihydroxybenzoic acid (2,6-DHBA) preferably interacted with caffeine via the H-bonding and stacking configuration between aromatic rings. Identifying the binding form of 2,6-DHBA to caffeine was estimated to predict how the two substances interact.


Subject(s)
Caffeine , Taste , Caffeine/chemistry , Membrane Potentials , Polymers , Proton Magnetic Resonance Spectroscopy
2.
Sensors (Basel) ; 22(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35214507

ABSTRACT

A taste sensor with lipid/polymer membranes can objectively evaluate taste. As previously reported, caffeine can be detected electrically using lipid/polymer membranes modified with hydroxybenzoic acids (HBAs). However, a systematic understanding of how HBAs contribute to caffeine detection is still lacking. In this study, we used various HBAs such as 2,6-dihydroxybenzoic acid (2,6-DHBA) to modify lipid/polymer membranes, and we detected caffeine using a taste sensor with the modified membranes. The effect of the concentrations of the HBAs on caffeine detection was also discussed. The results of the caffeine detection indicated that the response to caffeine and the reference potential measured in a reference solution were affected by the log P and pKa of HBAs. Furthermore, the taste sensor displayed high sensitivity to caffeine when the reference potential was adjusted to an appropriate range by modification with 2,6-DHBA, where the slope of the change in reference potential with increasing 2,6-DHBA concentration was steep. This is helpful in order to improve the sensitivity of taste sensors to other taste substances, such as theophylline and theobromine, in the future.


Subject(s)
Caffeine , Taste , Hydroxybenzoates , Lipids , Polymers , Taste/physiology
3.
Sensors (Basel) ; 20(12)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570946

ABSTRACT

A taste sensor with lipid/polymer membranes is one of the devices that can evaluate taste objectively. However, the conventional taste sensor cannot measure non-charged bitter substances, such as caffeine contained in coffee, because the taste sensor uses the potentiometric measurement based mainly on change in surface electric charge density of the membrane. In this study, we aimed at the detection of typical non-charged bitter substances such as caffeine, theophylline and theobromine included in beverages and pharmaceutical products. The developed sensor is designed to detect the change in the membrane potential by using a kind of allosteric mechanism of breaking an intramolecular hydrogen bond between the carboxy group and hydroxy group of aromatic carboxylic acid (i.e., hydroxy-, dihydroxy-, and trihydroxybenzoic acids) when non-charged bitter substances are bound to the hydroxy group. As a result of surface modification by immersing the sensor electrode in a modification solution in which 2,6-dihydroxybenzoic acid was dissolved, it was confirmed that the sensor response increased with the concentration of caffeine as well as allied substances. The threshold and increase tendency were consistent with those of human senses. The detection mechanism is discussed by taking into account intramolecular and intermolecular hydrogen bonds, which cause allostery. These findings suggest that it is possible to evaluate bitterness caused by non-charged bitter substances objectively by using the taste sensor with allosteric mechanism.


Subject(s)
Caffeine , Taste , Biosensing Techniques , Humans , Membrane Potentials
4.
Phys Chem Chem Phys ; 21(29): 16147-16153, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31292592

ABSTRACT

Calorimetric and terahertz-far-infrared (THz-FIR) spectroscopic and infrared (IR) spectroscopic measurements were conducted for [Li+@C60](PF6-) at temperatures between 1.8 and 395 K. [Li+@C60](PF6-) underwent a structural phase transition at around 360 K accompanied by the orientational order-disorder transition of Li+@C60 and PF6-. The transition occurred in a step-wise manner. The total transition entropy (ΔtrsS) of 40.1 ± 0.4 J K-1 mol-1 was smaller than that of the orientational order-disorder transition in a pristine C60 crystal (ΔtrsS = 45.4 ± 0.5 J K-1 mol-1). Thus, the orientational disorder of Li+@C60 in the high-temperature phase of [Li+@C60](PF6-) was much less excited than that of the pristine C60 owing to the Coulombic interactions, which stabilized the ionic crystal lattice of [Li+@C60](PF6-). At T < 100 K, upon cooling, Li+ ions were trapped in two pockets on the inner surface of C60, and no phase transition was observed. Finally, the Li+ ions achieved a complete order at 24 K through antiferroelectric transition. The ΔtrsS value of 4.6 ± 0.4 J K-1 mol-1 was slightly smaller than R ln 2 = 5.76 J K-1 mol-1 expected for the two-site order-disorder transition. The extent of the Li+ motion in the C60 cage was related to the selection rule in the THz-FIR and IR spectroscopy of the C60 internal vibrations, because a C60 cage should be polarized by the Li+ ion. It is shown that the local symmetry of the caged molecule can be modified by the rotational or hopping motion of the encaged ions.

5.
Phys Chem Chem Phys ; 18(46): 31384-31387, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27841436

ABSTRACT

Li+ ions encapsulated in fullerene C60 cages (Li+@C60) are expected to be suitable as molecular switches that respond to local electric fields. In this study, the rotational dynamics of Li+ ions in C60 cages at low temperatures are experimentally revealed for the first time using terahertz absorption spectroscopy. In crystalline [Li+@C60](PF6-), the Li+ ion rotates in the carbon cage even at 150 K. The rotational mode gradually changes into a librational mode below 120 K, which is associated with the localization of Li+ ions due to the electrostatic interactions with its screening image charge on the C60 cage as well as with the neighboring Li+@C60 and PF6- ions. A simple rotational/librational energy scheme for the Li+ ions successfully explains the spectroscopic results, and the potential of Li+@C60 as a molecular switch is discussed based on the energy scheme.

SELECTION OF CITATIONS
SEARCH DETAIL
...