Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38941028

ABSTRACT

Chronic stress has been linked to a large number of pathologies, including cancer, premature aging, and neurodegenerative diseases. The accumulation of molecular waste resulting from oxidative and heavy metal-induced stress has been ascribed as a major factor contributing to these diseases. With this in mind, we started by screening 13 small molecules to determine their antistress potential in heavy metal stress-exposed C6 glioblastoma and found that alpha-lipoic acid (ALA) (a natural antioxidant abundantly present in yeast, spinach, broccoli, and meat) was the most effective candidate. We then conducted molecular analyses to validate its mechanism of action. Dose-dependent toxicity assays of cells treated with two ALA enantiomers, R-ALA and S-ALA, showed that they are nontoxic and can be tolerated at relatively high doses. Cells exposed to heavy metal, heat, and oxidative stress showed better recovery when cultured in R-ALA-/S-ALA-supplemented medium, supported by reduction of reactive oxygen species (ROS), aggregated proteins, and mitochondrial and deoxyribonucleic acid (DNA) damage. Molecular analyses revealed protection against stress-induced apoptosis and induction of autophagy in R-ALA- and S-ALA-treated C6/U2OS cells. Consistent with these findings, normal human fibroblasts showed lifespan extension. Taken together, this study demonstrates that lipoic acid has antiaging and antistress potential and warrants further attention in laboratory and clinical studies.

2.
Curr Top Med Chem ; 24(9): 830-842, 2024.
Article in English | MEDLINE | ID: mdl-38279743

ABSTRACT

BACKGROUND: The recent COVID-19 (coronavirus disease 2019) pandemic triggered research on the development of new vaccines/drugs, repurposing of clinically approved drugs, and assessment of natural anti-COVID-19 compounds. Based on the gender difference in the severity of the disease, such as a higher number of men hospitalized and in intense care units, variations in sex hormones have been predicted to play a role in disease susceptibility. Cell surface receptors (Angiotensin-Converting Enzyme 2; ACE2 and a connected transmembrane protease serine 2- TMPSS2) are upregulated by androgens. Conversely, androgen antagonists have also been shown to lower ACE2 levels, implying their usefulness in COVID-19 management. OBJECTIVES: In this study, we performed computational and cell-based assays to investigate the anti- COVID-19 potential of Withaferin-A and Caffeic acid phenethyl ester, natural compounds from Withania somnifera and honeybee propolis, respectively. METHODS: Structure-based computational approach was adopted to predict binding stability, interactions, and dynamics of the two test compounds to three target proteins (androgen receptor, ACE2, and TMPRSS2). Further, in vitro, cell-based experimental approaches were used to investigate the effect of compounds on target protein expression and SARS-CoV-2 replication. RESULTS: Computation and experimental analyses revealed that (i) CAPE, but not Wi-A, can act as androgen antagonist and hence inhibit the transcriptional activation function of androgen receptor, (ii) while both Wi-A and CAPE could interact with ACE2 and TMPRSS2, Wi-A showed higher binding affinity, and (iii) combination of Wi-A and CAPE (Wi-ACAPE) caused strong downregulation of ACE2 and TMPRSS2 expression and inhibition of virus infection. CONCLUSION: Wi-A and CAPE possess multimodal anti-COVID-19 potential, and their combination (Wi-ACAPE) is expected to provide better activity and hence warrant further attention in the laboratory and clinic.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Caffeic Acids , Phenylethyl Alcohol , SARS-CoV-2 , Serine Endopeptidases , Withanolides , Humans , Angiotensin-Converting Enzyme 2/metabolism , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/chemistry , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Withanolides/pharmacology , Withanolides/chemistry , Serine Endopeptidases/metabolism , SARS-CoV-2/drug effects , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Receptors, Androgen/metabolism , COVID-19/virology , COVID-19/metabolism , Animals , Chlorocebus aethiops
3.
Health Phys ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206086

ABSTRACT

ABSTRACT: To discharge waste liquid containing radioactive iodine into sewage systems, long-term storage or dilution with a large amount of water may be required until the radioactivity concentration reduces below the standard value. Processing the waste liquid could be easier if radioactive iodine could be separated from the water. This study verified the effectiveness of superabsorbent polymer and α-cyclodextrin as treatment agents to separate radioactive iodine from waste liquids. Sodium iodide (Na125I) was added to purified water and artificial urine to prepare simulated waste liquids containing iodine equivalent to the urine of patients treated with radioactive iodine. The as-prepared simulated waste liquid was poured into a container with superabsorbent polymer and left for 90 d. The residual iodine rate in the simulated waste liquid was estimated by measuring 125I radioactivity. When the water was sufficiently dried, residual iodine rates on day 15 were 0.102 and 0.884 in the simulated waste liquids comprising purified water and artificial urine, respectively. The simulated waste liquid comprising purified water with 5% α-cyclodextrin absorbed by 1 g of superabsorbent polymer had a residual rate of 0.980. Moreover, the residual rate of simulated waste liquid comprising artificial urine with 2% α-cyclodextrin absorbed by 1 g of SAP was 0.949. Superabsorbent polymer combined with α-cyclodextrin was an effective treatment agent for separating radioactive iodine from waste liquids.

4.
J Biomol Struct Dyn ; : 1-11, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38116950

ABSTRACT

SARS-CoV-2 viral infection is regulated by the host cell receptors ACE2 and TMPRSS2, and therefore the effect of various natural and synthetic compounds on these receptors has recently been the subject of investigations. Cyclodextrins, naturally occurring polysaccharides derived from starch, are soluble in water and have a hydrophobic cavity at their center enabling them to accommodate small molecules and utilize them as carriers in the food, supplements, and pharmaceutical industries to improve the solubility, stability, and bioavailability of target compounds. In the current study, computational molecular simulations were used to investigate the ability of α-, ß- and γ-Cyclodextrins on human cell surface receptors. Cell-based experimental approaches, including expression analyses at mRNA and protein levels and virus replication, were used to assess the effect on receptor expression and virus infection, respectively. We found that none of the three CDs could dock effectively to human cell surface receptor ACE2 and viral protease Mpro (essential for virus replication). On the other hand, α- and ß-CD showed strong and stable interactions with TMPRSS2, and the expression of both ACE2 and TMPRSS2 was downregulated at the mRNA and protein levels in cyclodextrin (CD)-treated cells. A cell-based virus replication assay showed ∼20% inhibition by ß- and γ-CD. Taken together, the study suggested that (i) downregulation of expression of host cell receptors may not be sufficient to inhibit virus infection (ii) activity of the receptors and virus protein Mpro may play a critical and clinically relevant role, and hence (iii) newly emerging anti-Covid-19 compounds warrant multimodal functional analyses.Communicated by Ramaswamy H. Sarma.

5.
ACS Omega ; 8(38): 34972-34981, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37779935

ABSTRACT

The study aimed to prepare inclusion complexes of 1,3-diphenylurea (DPU) with ß-cyclodextrin (ßCD) and 2-hydroxypropyl-ß-cyclodextrin (HP-ßCD) using a three-dimensional ground mixture (3DGM). Their physicochemical properties, intermolecular interactions, solubilities, and plant growth-promoting activities were investigated on broccoli sprouts. Phase-solubility diagrams indicated the stability constant (Ks) and complexation efficiency (CE) of ßCD/DPU were found to be K1/1 = 250 M-1, CE = 2.48× 10-3. The Ks and CEs of HP-ßCD/DPU were found to be K1/1 = 427 M-1, CE = 3.93 × 10-3 and K2/1 = 196 M-1, CE = 1.93 × 10-3 respectively. The powder X-ray diffraction results of 3DGM (ßCD/DPU = 2/1, HP-ßCD/DPU = 2/1) showed that the diffraction peaks originating from the DPU and ßCD disappeared, indicating a halo pattern. Differential scanning calorimetry results showed an endothermic peak at 244 °C derived from the melting point of DPU, but the endothermic peak disappeared in the 3DGM (ßCD/DPU = 2/1, HP-ßCD/DPU = 2/1). Near-infrared absorption spectra showed peak shifts in 3DGM (ßCD/DPU and HP-ßCD/DPU) at the -CH and -NH groups of DPU and the -OH groups of ßCDs and free water. In the dissolution test (after 5 min), the concentration of intact DPU was 0.083 µg/mL. However, the dissolution concentrations of DPU in the 3DGM (ßCD/DPU = 1/1), 3DGM (ßCD/DPU = 2/1), 3DGM (HP-ßCD/DPU = 1/1), and 3DGM (HP-ßCD/DPU = 2/1) were 3.27, 3.64, 5.70, and 7.03 µg/mL, respectively, indicating higher solubility than that of the intact DPU. Further, 1H-1H NOESY NMR spectroscopic measurements showed cross-peaks between H-A (7.32 ppm) and H-B (7.12 ppm) of DPU and H-6 (3.79 ppm) in the ßCD cavity of the 3DGM (ßCD/DPU = 2/1). A cross-peak was also observed among DPU H-A (7.32 ppm), H-B (7.11 ppm), and H-6 (3.78 ppm) in the ßCD cavity. The results of the broccoli sprout cultivation experiment showed that 3DGM (ßCD/DPU = 1/1), 3DGM (ßCD/DPU = 2/1), 3DGM (HP-ßCD/DPU = 1/1), and 3DGM (HP-ßCD/DPU = 2/1) increased the stem thickness compared with that of the control group (DPU). These results indicated that the ßCD/DPU and HP-ßCD/DPU inclusion complexes were formed by the three-dimensional mixing and milling method, which enhanced the solubility and plant growth-promoting effects.

7.
Cancers (Basel) ; 14(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35159054

ABSTRACT

Withaferin A (Wi-A) and Caffeic Acid Phenethyl Ester (CAPE) are the bioactive ingredients of Ashwagandha (Withania somnifera) and propolis, respectively. Both of these natural compounds have been shown to possess anticancer activity. In the present study, we recruited a low dose of each of these compounds and developed a combination that exhibited remarkably potent anti-migratory and anti-angiogenic activities. Extensive molecular analyses including a cDNA array and expression analyses of the specific gene targets demonstrated that such activities are mediated through their effect on cell adhesion/tight junction proteins (Claudins, E-cadherin), inhibition of canonical Wnt/ß-catenin signaling pathways and the consequent downregulation of EMT-signaling proteins (Vimentin, MMPs, VEGF and VEGFR) that play a critical role in cancer metastasis. The data supported that this novel combination of Wi-A and CAPE (Wi-ACAPE, containing 0.5 µM of Wi-A and 10 µM of CAPE) may be recruited for the treatment of metastatic and aggressive cancers and, hence, warrant further evaluation by recruiting a variety of experimental and clinical metastatic models.

8.
Materials (Basel) ; 14(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34885460

ABSTRACT

Cyclodextrin-based metal-organic frameworks-1 (CD-MOF-1) prepared using potassium hydroxide, ethanol, and γ-cyclodextrin (γ-CD) has been reported as a new type of MOF for the development of pharmaceutical formulations. The present study aimed to investigate the physicochemical properties of ascorbic acid derivatives (L-ascorbyl 6-palmitate (ASCP); L-ascorbyl 2,6-palmitate (ASCDP)) complexed with CD-MOF-1 by a solvent evaporation method. Powder X-ray diffraction revealed that the crystal diffraction pattern of CD-MOF-1 changed from α-type to ß-type when prepared by a solvent evaporation method. For ASCP/CD-MOF-1 = 1/2 and ASCDP/CD-MOF-1 = 1/4 evaporated samples, the crystal diffraction peaks derived from ASCP and ASCDP disappeared, indicating a ß-like behavior. Differential scanning calorimetry results revealed that the endothermic peaks of evaporated samples (ASCP/CD-MOF-1 = 1/2 and ASCDP/CD-MOF-1 = 1/4) were not detected due to melting. Furthermore, intermolecular interactions were observed in the hydrogen bonds between the CH groups of the side chains of ASCP and ASCDP and the OH group of CD-MOF-1 in (ASCP/CD-MOF-1 = 1/2) and EVP (ASCDP/CD-MOF-1 = 1/4), based on the near-infrared absorption spectroscopy analysis. CD-MOF-1 did not form inclusion complexes with the lactone rings of ASCP and ASCDP, but with the lipophilic side chains. These results suggested that CD-MOF-1 may be useful in preparing novel drug carriers for ASCP and ASCDP.

9.
Nutrients ; 13(8)2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34444688

ABSTRACT

Propolis is produced by honeybees from materials collected from plants they visit. It is a resinous material having mixtures of wax and bee enzymes. Propolis is also known as bee glue and used by bees as a building material in their hives, for blocking holes and cracks, repairing the combs and strengthening their thin borders. It has been extensively used since ancient times for different purposes in traditional human healthcare practices. The quality and composition of propolis depend on its geographic location, climatic zone and local flora. The New Zealand and Brazilian green propolis are the two main kinds that have been extensively studied in recent years. Their bioactive components have been found to possess a variety of therapeutic potentials. It was found that Brazilian green propolis improves the cognitive functions of mild cognitive impairments in patients living at high altitude and protects them from neurodegenerative damage through its antioxidant properties. It possesses artepillin C (ARC) as the key component, also known to possess anticancer potential. The New Zealand propolis contains caffeic acid phenethyl ester (CAPE) as the main bioactive with multiple therapeutic potentials. Our lab performed in vitro and in vivo assays on the extracts prepared from New Zealand and Brazilian propolis and their active ingredients. We provided experimental evidence that these extracts possess anticancer, antistress and hypoxia-modulating activities. Furthermore, their conjugation with γCD proved to be more effective. In the present review, we portray the experimental evidence showing that propolis has the potential to be a candidate drug for different ailments and improve the quality of life.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Propolis/pharmacology , Animals , Brazil , Caffeic Acids/pharmacology , Humans , New Zealand , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Phenylpropionates/pharmacology
10.
Molecules ; 27(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35011307

ABSTRACT

Propolis, also known as bee-glue, is a resinous substance produced by honeybees from materials collected from plants they visit. It contains mixtures of wax and bee enzymes and is used by bees as a building material in their hives and by humans for different purposes in traditional healthcare practices. Although the composition of propolis has been shown to depend on its geographic location, climatic zone, and local flora; two largely studied types of propolis: (i) New Zealand and (ii) Brazilian green propolis have been shown to possess Caffeic Acid Phenethyl Ester (CAPE) and Artepillin C (ARC) as the main bioactive constituents, respectively. We have earlier reported that CAPE and ARC possess anticancer activities, mediated by abrogation of mortalin-p53 complex and reactivation of p53 tumor suppressor function. Like CAPE, Artepillin C (ARC) and the supercritical extract of green propolis (GPSE) showed potent anticancer activity. In this study, we recruited low doses of GPSE and ARC (that did not affect either cancer cell proliferation or migration) to investigate their antistress potential using in vitro cell based assays. We report that both GPSE and ARC have the capability to disaggregate metal- and heat-induced aggregated proteins. Metal-induced aggregation of GFP was reduced by fourfold in GPSE- as well as ARC-treated cells. Similarly, whereas heat-induced misfolding of luciferase protein showed 80% loss of activity, the cells treated with either GPSE or ARC showed 60-80% recovery. Furthermore, we demonstrate their pro-hypoxia (marked by the upregulation of HIF-1α) and neuro-differentiation (marked by differentiation morphology and upregulation of expression of GFAP, ß-tubulin III, and MAP2). Both GPSE and ARC also offered significant protection against oxidative stress and, hence, may be useful in the treatment of old age-related brain pathologies.


Subject(s)
Oxidative Stress/drug effects , Phenylpropionates/pharmacology , Propolis/chemistry , Propolis/pharmacology , Animals , Biomarkers , Brazil , Chemical Fractionation , Humans , Hypoxia/genetics , Hypoxia/metabolism , Phenylpropionates/chemistry , Plant Extracts , Propolis/isolation & purification , Reactive Oxygen Species/metabolism
11.
Discov Oncol ; 12(1): 64, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-35201513

ABSTRACT

Mutations in the tumor suppressor protein p53 is a prevalent feature in majority of cancers resulting in inactivation of its activities related to control of cell cycle progression and proliferation. p53Y220C is one of the common hotspot mutations that causes decrease in its thermodynamic stability. Some small molecules have been shown to bind to the mutated site and restore its wild type thermodynamics and tumor suppressor function. In this study, we have explored the potential of caffeic acid phenethyl ester (CAPE-a bioactive compound from propolis) to interact with p53Y220C and restore its wild type p53 (p53wt) transcription activation and tumor suppressor activities. We recruited computational methods, viz. molecular docking, molecular dynamics simulations and free energy calculations to study the interaction of CAPE at the mutation crevice and found that it has potential to restore p53wt function of the p53Y220C mutant similar to a previously described restoration molecule PK7242. We provide cell-based experimental evidence to these predictions and suggest CAPE as a potential natural drug for treatment of p53Y220C mutant harboring cancers.

12.
Front Aging Neurosci ; 12: 561925, 2020.
Article in English | MEDLINE | ID: mdl-33244299

ABSTRACT

Cell-based screening of bioactive compounds has served as an important gateway in drug discovery. In the present report, using human neuroblastoma cells and enrolling an extensive three-step screening of 57 phytochemicals, we have identified caffeic acid phenethyl ester (CAPE) as a potent neurodifferentiating natural compound. Analyses of control and CAPE-induced neurodifferentiated cells revealed: (i) modulation of several key proteins (NF200, MAP-2, NeuN, PSD95, Tuj1, GAP43, and GFAP) involved in neurodifferentiation process; and (ii) attenuation of neuronal stemness (HOXD13, WNT3, and Msh-2) and proliferation-promoting (CDC-20, CDK-7, and BubR1) proteins. We anticipated that the neurodifferentiation potential of CAPE may be beneficial for the treatment of neurodegenerative diseases and tested it using the Drosophila model of Alzheimer's disease (AD) and mice model of amnesia/loss of memory. In both models, CAPE exhibited improved disease symptoms and activation of physiological functions. Remarkably, CAPE-treated mice showed increased levels of neurotrophin-BDNF, neural progenitor marker-Nestin, and differentiation marker-NeuN, both in the cerebral cortex and hippocampus. Taken together, we demonstrate the differentiation-inducing and therapeutic potential of CAPE for neurodegenerative diseases.

13.
Cancers (Basel) ; 12(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825706

ABSTRACT

Caffeic acid phenethyl ester (CAPE) is a key bioactive ingredient of honeybee propolis and is claimed to have anticancer activity. Since mortalin, a hsp70 chaperone, is enriched in a cancerous cell surface, we recruited a unique cell internalizing anti-mortalin antibody (MotAb) to generate mortalin-targeting CAPE nanoparticles (CAPE-MotAb). Biophysical and biomolecular analyses revealed enhanced anticancer activity of CAPE-MotAb both in in vitro and in vivo assays. We demonstrate that CAPE-MotAb cause a stronger dose-dependent growth arrest/apoptosis of cancer cells through the downregulation of Cyclin D1-CDK4, phospho-Rb, PARP-1, and anti-apoptotic protein Bcl2. Concomitantly, a significant increase in the expression of p53, p21WAF1, and caspase cleavage was obtained only in CAPE-MotAb treated cells. We also demonstrate that CAPE-MotAb caused a remarkably enhanced downregulation of proteins critically involved in cell migration. In vivo tumor growth assays for subcutaneous xenografts in nude mice also revealed a significantly enhanced suppression of tumor growth in the treated group suggesting that these novel CAPE-MotAb nanoparticles may serve as a potent anticancer nanomedicine.

14.
Cancers (Basel) ; 12(5)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380701

ABSTRACT

We have earlier reported anticancer activity in Withaferin A (Wi-A), a withanolide derived from Ashwagandha (Withania somnifera) and caffeic acid phenethyl ester (CAPE), an active compound from New Zealand honeybee propolis. Whereas Wi-A was cytotoxic to both cancer and normal cells, CAPE has been shown to cause selective death of cancer cells. In the present study, we investigated the efficacy of Wi-A, CAPE, and their combination to ovarian and cervical cancer cells. Both Wi-A and CAPE were seen to activate tumor suppressor protein p53 by downregulation of mortalin and abrogation of its interactions with p53. Downregulation of mortalin translated to compromised mitochondria integrity and function that affected poly ADP-ribose polymerase1 (PARP1); a key regulator of DNA repair and protein-target for Olaparib, drugs clinically used for treatment of breast, ovarian and cervical cancers)-mediated DNA repair yielding growth arrest or apoptosis. Furthermore, we also compared the docking capability of Wi-A and CAPE to PARP1 and found that both of these could bind to the catalytic domain of PARP1, similar to Olaparib. We provide experimental evidences that (i) Wi-A and CAPE cause inactivation of PARP1-mediated DNA repair leading to accumulation of DNA damage and activation of apoptosis signaling by multiple ways, and (ii) a combination of Wi-A and CAPE offers selective toxicity and better potency to cancer cells.

15.
Nutrients ; 12(3)2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32121454

ABSTRACT

Environmental stress, exhaustive industrialization and the use of chemicals in our daily lives contribute to increasing incidence of cancer and other pathologies. Although the cancer treatment has revolutionized in last 2-3 decades, shortcomings such as (i) extremely high cost of treatment, (ii) poor availability of drugs, (iii) severe side effects and (iv) emergence of drug resistance have prioritized the need of developing alternate natural, economic and welfare (NEW) therapeutics reagents. Identification and characterization of such anti-stress NEW drugs that not only limit the growth of cancer cells but also reprogram them to perform their specific functions are highly desired. We recruited rat glioma- and human neuroblastoma-based assays to explore such activities of resveratrol, a naturally occurring stilbenoid. We demonstrate that nontoxic doses of resveratrol protect cells against a variety of stresses that are largely involved in age-related brain pathologies. These included oxidative, DNA damage, metal toxicity, heat, hypoxia, and protein aggregation stresses. Furthermore, it caused differentiation of cells to functional astrocytes and neurons as characterized by the upregulation of their specific protein markers. These findings endorse multiple bioactivities of resveratrol and encourage them to be tested for their benefits in animal models and humans.


Subject(s)
Antioxidants/pharmacology , Cellular Reprogramming/drug effects , Glioma/prevention & control , Neuroblastoma/prevention & control , Resveratrol/pharmacology , Aging/physiology , Animals , Antioxidants/therapeutic use , Astrocytes/drug effects , Astrocytes/physiology , Brain/cytology , Brain/drug effects , Brain/pathology , Cell Line, Tumor , DNA Damage/drug effects , Dose-Response Relationship, Drug , Environmental Exposure/adverse effects , Glioma/etiology , Glioma/pathology , Humans , Neuroblastoma/etiology , Neuroblastoma/pathology , Neurons/drug effects , Neurons/physiology , Oxidative Stress/drug effects , Rats , Resveratrol/therapeutic use
16.
Nutrients ; 12(1)2019 Dec 22.
Article in English | MEDLINE | ID: mdl-31877869

ABSTRACT

Kuding tea (KT) is a traditional Chinese beverage rich in plant bioactives that may exhibit various health benefits. However, little is known about the safety of KT extract (KTE) when consumed long term at high doses as a dietary supplement. Therefore, in this study, we investigated aspects of the safety of KTE. Male C57BL/6 mice were fed a high-fat, high-fructose, Western-type diet (control) supplemented with either 12.88% γ-cyclodextrin (γCD), 7.12% KTE (comprising 0.15% ursolic acid, UA) encapsulated in 12.88% γCD (KTE-γCD), or 0.15% UA over a 6-week experimental period. The dietary treatments did not affect food intake, body weight or body composition. However, treatment with KTE-γCD, but not γCD and UA, increased liver weight and hepatic fat accumulation, which was accompanied by increased hepatic PPARγ and CD36 mRNA levels. KTE-γCD treatment elevated plasma cholesterol and CYP7A1 mRNA and protein levels compared to those in control mice. KTE-γCD substantially increased the mRNA and protein levels of hepatic CYP3A and GSTA1, which are central to the detoxification of drugs and xenobiotics. Furthermore, we observed a moderate elevation in hepatic CYP3A (5-fold change) and GSTA1 (1.7-fold change) mRNA levels in UA-fed mice. In vitro data collected in HepG2 cells indicated a dose-dependent increase in hepatic cytotoxicity in response to KTE treatment, which may have been partly mediated by UA. Overall, the present data may contribute to the safety assessment of KTE and suggest that KTE encapsulated in γCD affects liver fat storage and the hepatic phase I and phase II responses in mice.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Enzyme Induction/drug effects , Liver/enzymology , Plant Extracts/pharmacology , Tea/chemistry , Adipose Tissue , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Body Composition/drug effects , Camellia sinensis/chemistry , Dietary Supplements , Hep G2 Cells , Humans , Liver/anatomy & histology , Male , Mice , Mice, Inbred C57BL , Organ Size , Plant Extracts/chemistry
17.
Mar Drugs ; 17(3)2019 Mar 23.
Article in English | MEDLINE | ID: mdl-30909572

ABSTRACT

Stress, protein aggregation, and loss of functional properties of cells have been shown to contribute to several deleterious pathologies including cancer and neurodegeneration. The incidence of these pathologies has also been shown to increase with age and are often presented as evidence to the cumulative effect of stress and protein aggregation. Prevention or delay of onset of these diseases may prove to be unprecedentedly beneficial. In this study, we explored the anti-stress and differentiation-inducing potential of two marine bioactive carotenoids (astaxanthin and fucoxanthin) using rat glioma cells as a model. We found that the low (nontoxic) doses of both protected cells against UV-induced DNA damage, heavy metal, and heat-induced protein misfolding and aggregation of proteins. Their long-term treatment in glioma cells caused the induction of physiological differentiation into astrocytes. These phenotypes were supported by upregulation of proteins that regulate cell proliferation, DNA damage repair mechanism, and glial differentiation, suggesting their potential for prevention and treatment of stress, protein aggregation, and age-related pathologies.


Subject(s)
Glioma/drug therapy , Protein Aggregates/drug effects , Protein Aggregation, Pathological/prevention & control , Xanthophylls/pharmacology , Animals , Antioxidants/pharmacology , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , DNA Damage/drug effects , Glioma/metabolism , Glioma/pathology , Inhibitory Concentration 50 , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/pathology , Rats , Stress, Physiological/drug effects , Ultraviolet Rays
18.
Cell Stress Chaperones ; 23(5): 1055-1068, 2018 09.
Article in English | MEDLINE | ID: mdl-29869000

ABSTRACT

Honeybee propolis and its bioactive component, caffeic acid phenethyl ester (CAPE), are known for a variety of therapeutic potentials. By recruiting a cell-based reporter assay for screening of hypoxia-modulating natural drugs, we identified CAPE as a pro-hypoxia factor. In silico studies were used to probe the capacity of CAPE to interact with potential hypoxia-responsive proteins. CAPE could not dock into hypoxia inducing factor (HIF-1), the master regulator of hypoxia response pathway. On the other hand, it was predicted to bind to factor inhibiting HIF (FIH-1). The active site residue (Asp201) of FIH-1α was involved in hydrogen bond formation with CAPE and its analogue, caffeic acid methyl ester (CAME), especially in the presence of Fe and 2-oxoglutaric acid (OGA). We provide experimental evidence that the low doses of CAPE, that did not cause cytotoxicity or anti-migratory effect, activated HIF-1α and inhibited stress-induced protein aggregation, a common cause of age-related pathologies. Furthermore, by structural homology search, we explored and found candidate compounds that possess stronger FIH-1 binding capacity. These compounds could be promising candidates for modulating therapeutic potential of CAPE, and its recruitment in treatment of protein aggregation-based disorders.


Subject(s)
Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Caffeic Acids/metabolism , Cell Hypoxia , Cell Line, Tumor , Cell Movement/drug effects , Computational Biology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Molecular Docking Simulation , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/pharmacology , Protein Aggregates , Stress, Physiological
19.
Int J Oncol ; 52(3): 925-932, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29393408

ABSTRACT

Propolis, a resinous substance collected by honeybees by mixing their saliva with plant sources, including tree bark and leaves and then mixed with secreted beeswax, possesses a variety of bioactivities. Whereas caffeic acid phenethyl ester (CAPE) has been recognized as a major bioactive ingredient in New Zealand propolis, Brazilian green propolis, on the other hand, possesses artepillin C (ARC). In this study, we report that, similar to CAPE, ARC docks into and abrogates mortalin-p53 complexes, causing the activation of p53 and the growth arrest of cancer cells. Cell viability assays using ARC and green propolis-supercritical extract (GPSE) revealed higher cytotoxicity in the latter, supported by nuclear translocation and the activation of p53. Furthermore, in vivo tumor suppression assays using nude mice, we found that GPSE and its conjugate with γ cyclodextrin (γCD) possessed more potent anticancer activity than purified ARC. GPSE­Î³CD may thus be recommended as a natural, effective and economic anticancer amalgam.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Neoplasms/drug therapy , Phenylpropionates/pharmacology , Propolis/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Brazil , Cell Line, Tumor , Cell Movement/drug effects , Chromatography, Supercritical Fluid , Computational Biology , Female , HSP70 Heat-Shock Proteins/metabolism , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mitochondrial Proteins/metabolism , Molecular Docking Simulation , Phenylpropionates/chemistry , Phenylpropionates/therapeutic use , Propolis/chemistry , Propolis/therapeutic use , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays , gamma-Cyclodextrins/chemistry , gamma-Cyclodextrins/pharmacology , gamma-Cyclodextrins/therapeutic use
20.
Integr Cancer Ther ; 17(3): 867-873, 2018 09.
Article in English | MEDLINE | ID: mdl-29390900

ABSTRACT

Besides honey, honeybees make a sticky substance (called propolis/bee glue) by mixing saliva with poplar tree resin and other botanical sources. It is known to be rich in bioactivities of which the anticancer activity is most studied. Caffeic acid phenethyl ester (CAPE) is a key anticancer component in New Zealand propolis. We have earlier investigated the molecular mechanism of anticancer activity in CAPE and reported that it activates DNA damage signaling in cancer cells. CAPE-induced growth arrest of cells was mediated by downregulation of mortalin and activation of p53 tumor suppressor protein. When antitumor and antimetastasis activities of CAPE were examined in vitro and in vivo, we failed to find significant activities, which was contrary to our expectations. On careful examination, it was revealed that CAPE is unstable and rather gets easily degraded into caffeic acid by secreted esterases. Interestingly, when CAPE was complexed with γ-cyclodextrin (γCD) the activities were significantly enhanced. In the present study, we report that the CAPE-γCD complex with higher cytotoxicity to a wide range of cancer cells is stable in acidic milieu and therefore recommended as an anticancer amalgam. We also report a method for preparation of stable and less-pungent powder of propolis that could be conveniently used for health and therapeutic benefits.


Subject(s)
Antineoplastic Agents/pharmacology , Caffeic Acids/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Propolis/pharmacology , gamma-Cyclodextrins/pharmacology , A549 Cells , Animals , Antineoplastic Agents/therapeutic use , Apitherapy , Caffeic Acids/chemistry , Caffeic Acids/therapeutic use , Drug Combinations , Female , HeLa Cells , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/therapeutic use , Propolis/therapeutic use , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , gamma-Cyclodextrins/chemistry , gamma-Cyclodextrins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...