Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Pharmacokinet ; 18(6): 365-72, 2003.
Article in English | MEDLINE | ID: mdl-15618757

ABSTRACT

It is suggested that the bioavailability of CYP3A4 substrates might be low due to first-pass metabolism in the small intestine, and it is possible that P-glycoprotein (P-gp) may influence first-pass metabolism in a co-operative manner. We have collected information of the pharmacokinetics of CYP3A4 substrates to evaluate the fraction absorbed (Fa), intestinal availability (Fg) and hepatic availability (Fh) and have investigated the intestinal first-pass metabolism and the effect of P-gp on this. The pharmacokinetic data involved ten compounds metabolized by CYP3A4 in humans, with and without an inhibitor or inducer. FaFg, which is the product of Fa and Fg, and Fh were calculated using three liver blood flow rates (17.1, 21.4, 25.5 mL/min/kg) in consideration of variations in the liver flow rate. Co-administration with an inhibitor of CYP3A4 and treatment of an inducer of CYP3A4 caused an increase and decrease in the FaFg of CYP3A4 substrates, regardless of the liver blood flow, indicating that CYP3A4 substrates exhibit a first-pass effect in their metabolism. This holds true regardless of whether the compounds are P-gp substrates or not. No relationship was observed between FaFg and Fh, regardless of the hepatic blood flow rate and the P-gp substrates. The FaFg of both P-gp and non P-gp substrates decreased as the hepatic intrinsic clearance increased. FaFg was markedly reduced when the hepatic intrinsic clearance was more than 100 mL/min/kg. This in vivo intrinsic clearance corresponds to an in vitro intrinsic clearance of 78 muL/min/mg human hepatic microsomal protein, equivalent to a half-life of 8.9 min for the substrate in a commonly used metabolic stability test with human microsomes (1 mgMs protein/mL). This phenomenon was not observed in substrates of CYP isoforms other than CYP3A4. In conclusion, it is suggested that CYP3A4 substrates which have a hepatic intrinsic clearance of 100 mL/min/kg exhibit a low bioavailability due to intestinal first-pass metabolism, regardless of whether they are substrates of P-gp or not.

2.
Drug Metab Dispos ; 30(8): 904-10, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12124308

ABSTRACT

To identify an appropriate animal model for the study of drug interaction via CYP3A4 inhibition, the inhibition of in vitro mexazolam metabolism by various 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors [simvastatin (lactone), simvastatin acid, fluvastatin, atorvastatin, cerivastatin, pravastatin lactone, and pravastatin (acid)] in male and female rat liver microsomes was investigated and compared with that by HMG-CoA reductase inhibitors in human liver microsomes reported previously. The metabolism of mexazolam in male and female rat liver microsomes was inhibited by all the HMG-CoA reductase inhibitors examined except pravastatin (acid). The K(i) values in female rats were lower than those in male rats, demonstrating the presence of a sex difference in the inhibition potency of HMG-CoA reductase inhibitors toward mexazolam. Using anti-cytochrome P450 (P450) antisera, the main P450 isozyme responsible for the metabolism of mexazolam was identified as CYP3A in female rats and CYP2C11 in male rats. Based on these results, we speculate that the sex difference in the inhibition potency of HMG-CoA reductase inhibitors for mexazolam observed in rats is caused by their different inhibition potencies against CYP2C11 and CYP3A isoforms. For mexazolam metabolism, the results obtained in female rats, rather than those in male rats, seem to be a much better reflection of the results in humans. Since species and sex differences were observed in P450 isozymes in the present study, our results show that establishing appropriate experimental conditions, in particular with respect to the P450 isozymes responsible for the drug metabolism in question, is indispensable for the investigation of drug interactions using rats as a model animal for humans.


Subject(s)
Anti-Anxiety Agents/metabolism , Benzodiazepines , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Microsomes, Liver/metabolism , Animals , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Dexamethasone/pharmacology , Drug Interactions , Female , In Vitro Techniques , Itraconazole/metabolism , Kinetics , Male , Microsomes, Liver/enzymology , Rats , Rats, Sprague-Dawley , Sex Factors
3.
AAPS PharmSci ; 4(4): E25, 2002.
Article in English | MEDLINE | ID: mdl-12645997

ABSTRACT

When the metabolism of a drug is competitively or noncompetitively inhibited by another drug, the degree of in vivo interaction can be evaluated from the [I]u/Ki ratio, where [I]u is the unbound concentration around the enzyme and Ki is the inhibition constant of the inhibitor. In the present study, we evaluated the metabolic inhibition potential of drugs known to be inhibitors or substrates of cytochrome P450 by estimating their [I]u/Ki ratio using literature data. The maximum concentration of the inhibitor in the circulating blood ([I]max), its maximum unbound concentration in the circulating blood ([I]max,u), and its maximum unbound concentration at the inlet to the liver ([I]in,max,u) were used as [I]u, and the results were compared with each other. In order to calculate the [I]u/Ki ratios, the pharmacokinetic parameters of each drug were obtained from the literature, together with their reported Ki values determined in in vitro studies using human liver microsomes. For most of the drugs with a calculated [I]in,max,u/Ki ratio less than 0.25, which applied to about half of the drugs investigated, no in vivo interactions had been reported or "no interaction" was reported in clinical studies. In contrast, the [I]max,u/Ki and [I]max/Ki ratio was calculated to be less than 0.25 for about 90% and 65% of the drugs, respectively, and more than a 1.25-fold increase was reported in the area under the concentration-time curve of the co-administered drug for about 30% of such drugs. These findings indicate that the possibility of underestimation of in vivo interactions (possibility of false-negative prediction) is greater when [I]max,u or [I]max values are used compared with using [I]in,max,u values.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Binding, Competitive , Drug Interactions , Enzyme Inhibitors/pharmacokinetics , Humans , Kinetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...